ﻻ يوجد ملخص باللغة العربية
Solving algebra story problems remains a challenging task in artificial intelligence, which requires a detailed understanding of real-world situations and a strong mathematical reasoning capability. Previous neural solvers of math word problems directly translate problem texts into equations, lacking an explicit interpretation of the situations, and often fail to handle more sophisticated situations. To address such limits of neural solvers, we introduce the concept of a emph{situation model}, which originates from psychology studies to represent the mental states of humans in problem-solving, and propose emph{SMART}, which adopts attributed grammar as the representation of situation models for algebra story problems. Specifically, we first train an information extraction module to extract nodes, attributes, and relations from problem texts and then generate a parse graph based on a pre-defined attributed grammar. An iterative learning strategy is also proposed to improve the performance of SMART further. To rigorously study this task, we carefully curate a new dataset named emph{ASP6.6k}. Experimental results on ASP6.6k show that the proposed model outperforms all previous neural solvers by a large margin while preserving much better interpretability. To test these models generalization capability, we also design an out-of-distribution (OOD) evaluation, in which problems are more complex than those in the training set. Our model exceeds state-of-the-art models by 17% in the OOD evaluation, demonstrating its superior generalization ability.
Story generation, namely generating a reasonable story from a leading context, is an important but challenging task. In spite of the success in modeling fluency and local coherence, existing neural language generation models (e.g., GPT-2) still suffe
Large-scale pretrained language models have shown thrilling generation capabilities, especially when they generate consistent long text in thousands of words with ease. However, users of these models can only control the prefix of sentences or certai
We present GraPPa, an effective pre-training approach for table semantic parsing that learns a compositional inductive bias in the joint representations of textual and tabular data. We construct synthetic question-SQL pairs over high-quality tables v
We investigate large-scale latent variable models (LVMs) for neural story generation -- an under-explored application for open-domain long text -- with objectives in two threads: generation effectiveness and controllability. LVMs, especially the vari
Long-form narrative text generated from large language models manages a fluent impersonation of human writing, but only at the local sentence level, and lacks structure or global cohesion. We posit that many of the problems of story generation can be