Noncentrosymmetric nature of single-layer transition metal dichalcogenides manifest itself in the finite piezoelectricity and valley-Zeeman coupling. We microscopically model nonlinear exciton transport in nano-bubble of single-layers of transition metal dichalcogenide. Thanks to the giant piezoelectric effect, we obtain an enormous internal electric field, $E_{rm piezo}sim 10^7$V/m, resulting in a built-in dipole moment of excitons. We demonstrate that the piezo-induced dipole-dipole interaction provides a novel channel for the nonlinear exciton transport distinct from the conventional isotropic funneling of excitons and leading to the formation of hexagon-shaped exciton droplet on top of a circularly symmetric nano-bubble. The effect is tunable via the bubble size dependence of the piezo-electric field $E_{rm piezo} sim h^2_{rm max}/R^3$ with $h_{rm max}$ and $R$ being the bubble height and radius, respectively.