ﻻ يوجد ملخص باللغة العربية
The Mumbai Suburban Railways, emph{locals}, are a key transit infrastructure of the city and is crucial for resuming normal economic activity. To reduce disease transmission, policymakers can enforce reduced crowding and mandate wearing of masks. emph{Cohorting} -- forming groups of travelers that always travel together, is an additional policy to reduce disease transmission on textit{locals} without severe restrictions. Cohorting allows us to: ($i$) form traveler bubbles, thereby decreasing the number of distinct interactions over time; ($ii$) potentially quarantine an entire cohort if a single case is detected, making contact tracing more efficient, and ($iii$) target cohorts for testing and early detection of symptomatic as well as asymptomatic cases. Studying impact of cohorts using compartmental models is challenging because of the ensuing representational complexity. Agent-based models provide a natural way to represent cohorts along with the representation of the cohort members with the larger social network. This paper describes a novel multi-scale agent-based model to study the impact of cohorting strategies on COVID-19 dynamics in Mumbai. We achieve this by modeling the Mumbai urban region using a detailed agent-based model comprising of 12.4 million agents. Individual cohorts and their inter-cohort interactions as they travel on locals are modeled using local mean field approximations. The resulting multi-scale model in conjunction with a detailed disease transmission and intervention simulator is used to assess various cohorting strategies. The results provide a quantitative trade-off between cohort size and its impact on disease dynamics and well being. The results show that cohorts can provide significant benefit in terms of reduced transmission without significantly impacting ridership and or economic & social activity.
The paper describes a MAS (multi-agent system) simulation approach for controlling PM10 (Particulate Matter) crisis peaks. A dispersion model is used with an Artificial Neural Network (ANN) to predict the PM10 concentration level. The dispersion and
The COVID-19 pandemic has affected travel behaviors and transportation system operations, and cities are grappling with what policies can be effective for a phased reopening shaped by social distancing. This edition of the white paper updates travel
During the COVID-19 crisis there have been many difficult decisions governments and other decision makers had to make. E.g. do we go for a total lock down or keep schools open? How many people and which people should be tested? Although there are man
In this paper we consider the problem of finding the most probable set of events that could have led to a set of partial, noisy observations of some dynamical system. In particular, we consider the case of a dynamical system that is a (possibly stoch
Human culture is uniquely cumulative and open-ended. Using a computational model of cultural evolution in which neural network based agents evolve ideas for actions through invention and imitation, we tested the hypothesis that this is due to the cap