ترغب بنشر مسار تعليمي؟ اضغط هنا

The AIV strategy of the Common Path of Son of X-Shooter

69   0   0.0 ( 0 )
 نشر من قبل Federico Biondi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Son Of X-Shooter (SOXS) is a double-armed (UV-VIS, NIR) spectrograph designed to be mounted at the ESO-NTT in La Silla, now in its Assembly Integration and Verification (AIV) phase. The instrument is designed following a modular approach so that each sub-system can be integrated in parallel before their assembly at system level. INAF-Osservatorio Astronomico di Padova will deliver the Common Path (CP) sub-system, which represents the backbone of the entire instrument. In this paper, we describe the foreseen operation for the CP alignment and we report some results already achieved, showing that we envisaged the suitable setup and the strategy to meet the opto-mechanical requirements.



قيم البحث

اقرأ أيضاً

Son of X-Shooter (SOXS) will be a high-efficiency spectrograph with a mean Resolution-Slit product of $sim 4500$ (goal 5000) over the entire band capable of simultaneously observing the complete spectral range 350-2000 nm. It consists of three scient ific arms (the UV-VIS Spectrograph, the NIR Spectrograph and the Acquisition Camera) connected by the Common Path system to the NTT and the Calibration Unit. The Common Path is the backbone of the instrument and the interface to the NTT Nasmyth focus flange. The light coming from the focus of the telescope is split by the common path optics into the two different optical paths in order to feed the two spectrographs and the acquisition camera. The instrument project went through the Preliminary Design Review in 2017 and is currently in Final Design Phase (with FDR in July 2018). This paper outlines the status of the Common Path system and is accompanied by a series of contributions describing the SOXS design and properties after the instrument Preliminary Design Review.
Son Of X-Shooter (SOXS) will be a new instrument designed to be mounted at the Nasmyth--A focus of the ESO 3.5 m New Technology Telescope in La Silla site (Chile). SOXS is composed of two high-efficiency spectrographs with a resolution slit product 4 500, working in the visible (350 -- 850 nm) and NIR (800 -- 2000 nm) range respectively, and a light imager in the visible (the acquisition camera usable also for scientific purposes). The science case is very broad, it ranges from moving minor bodies in the solar system, to bursting young stellar objects, cataclysmic variables and X-ray binary transients in our Galaxy, supernovae and tidal disruption events in the local Universe, up to gamma-ray bursts in the very distant and young Universe, basically encompassing all distance scales and astronomy branches. At the moment, the instrument passed the Preliminary Design Review by ESO (July 2017) and the Final Design (with FDR in July 2018).
The Gemini Planet Imager (GPI) entered on-sky commissioning phase, and had its First Light at the Gemini South telescope in November 2013. Meanwhile, the fast loops for atmospheric correction of the Extreme Adaptive Optics (XAO) system have been clos ed on many dozen stars at different magnitudes (I=4-8), elevation angles and a variety of seeing conditions, and a stable loop performance was achieved from the beginning. Ultimate contrast performance requires a very low residual wavefront error (design goal 60 nm RMS), and optimization of the planet finding instrument on different ends has just begun to deepen and widen its dark hole region. Laboratory raw contrast benchmarks are in the order of 10^-6 or smaller. In the telescope environment and in standard operations new challenges are faced (changing gravity, temperature, vibrations) that are tackled by a variety of techniques such as Kalman filtering, open-loop models to keep alignment to within 5 mas, speckle nulling, and a calibration unit (CAL). The CAL unit was especially designed by the Jet Propulsion Laboratory to control slowly varying wavefront errors at the focal plane of the apodized Lyot coronagraph by the means of two wavefront sensors: 1) a 7x7 low order Shack-Hartmann SH wavefront sensor (LOWFS), and 2) a special Mach-Zehnder interferometer for mid-order spatial frequencies (HOWFS) - atypical in that the beam is split in the focal plane via a pinhole but recombined in the pupil plane with a beamsplitter. The original design goal aimed for sensing and correcting on a level of a few nm which is extremely challenging in a telescope environment. This paper focuses on non-common path low order wavefront correction as achieved through the CAL unit on sky. We will present the obtained results as well as explain challenges that we are facing.
X-shooter is one of the most popular instruments at the VLT, offering instantaneous spectroscopy from 300 to 2500 nm. We present the design of a single polarimetric unit at the polarization-free Cassegrain focus that serves all three spectrograph arm s of X-shooter. It consists of a calcite Savart plate as a polarizing beam-splitter and a rotatable crystal retarder stack as a polychromatic modulator. Since even superachromatic wave plates have a wavelength range that is too limited for X-shooter, this novel modulator is designed to offer close-to-optimal polarimetric efficiencies for all Stokes parameters at all wavelengths. We analyze the modulator design in terms of its polarimetric performance, its temperature sensitivity, and its polarized fringes. Furthermore, we present the optical design of the polarimetric unit. The X-shooter polarimeter will furnish a myriad of science cases: from measuring stellar magnetic fields (e.g., Ap stars, white dwarfs, massive stars) to determining asymmetric structures around young stars and in supernova explosions.
The two main advantages of exoplanet imaging are the discovery of objects in the outer part of stellar systems -- constraining models of planet formation --, and its ability to spectrally characterize the planets -- information on their atmosphere. I t is however challenging because exoplanets are up to 1e10 times fainter than their star and separated by a fraction of arcsecond. Current instruments like SPHERE/VLT or GPI/Gemini detect young and massive planets because they are limited by non-common path aberrations (NCPA) that are not corrected by the adaptive optics system. To probe fainter exoplanets, new instruments capable of minimizing the NCPA is needed. One solution is the self-coherent camera (SCC) focal plane wavefront sensor, whose performance was demonstrated in laboratory attenuating the starlight by factors up to several 1e8 in space-like conditions at angular separations down to 2L/D. In this paper, we demonstrate the SCC on the sky for the first time. We installed an SCC on the stellar double coronagraph (SDC) instrument at the Hale telescope. We used an internal source to minimize the NCPA that limited the vortex coronagraph performance. We then compared to the standard procedure used at Palomar. On internal source, we demonstrated that the SCC improves the coronagraphic detection limit by a factor between 4 and 20 between 1.5 and 5L/D. Using this SCC calibration, the on-sky contrast is improved by a factor of 5 between 2 and 4L/D. These results prove the ability of the SCC to be implemented in an existing instrument. This paper highlights two interests of the self-coherent camera. First, the SCC can minimize the speckle intensity in the field of view especially the ones that are very close to the star where many exoplanets are to be discovered. Then, the SCC has a 100% efficiency with science time as each image can be used for both science and NCPA minimization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا