ترغب بنشر مسار تعليمي؟ اضغط هنا

Tracking the electronic oscillation in molecule with tunneling microscopy

74   0   0.0 ( 0 )
 نشر من قبل Rulin Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Visualizing and controlling electron dynamics over femtosecond timescale play a key role in the design of next-generation electronic devices. Using simulations, we demonstrate the electronic oscillation inside the naphthalene molecule can be tracked by means of the tuning of delay time between two identical femtosecond laser pulses. Both the frequency and decay time of the oscillation are detected by the tunneling charge through the junction of scanning tunneling microscopy. And the tunneling charge is sensitive to the carrier-envelope phase (CEP) for few-cycle long optical pulses. While this sensitivity to CEP will disappear with the increase of time-length of pulses. Our simulation results show that it is possible to visualize and control the electron dynamics inside the molecule by one or two femtosecond laser pulses.



قيم البحث

اقرأ أيضاً

Glycans play a central role as mediators in most biological processes, but their structures are complicated by isomerism. Epimers and anomers, regioisomers, and branched sequences contribute to a structural variability that dwarfs those of nucleic ac ids and proteins, challenging even the most sophisticated analytical tools, such as NMR and mass spectrometry. Here, we introduce an electron tunneling technique that is label-free and can identify carbohydrates at the single-molecule level, offering significant benefits over existing technology. It is capable of analyzing sub-picomole quantities of sample, counting the number of individual molecules in each subset in a population of coexisting isomers, and is quantitative over more than four orders of magnitude of concentration. It resolves epimers not well separated by ion-mobility and can be implemented on a silicon chip. It also provides a readout mechanism for direct single-molecule sequencing of linear oligosaccharides.
Electronic nematic phases have been proposed to occur in various correlated electron systems and were recently claimed to have been detected in scanning tunneling microscopy (STM) conductance maps of the pseudogap states of the cuprate high-temperatu re superconductor Bi2Sr2CaCu2O8+x (Bi-2212). We investigate the influence of anisotropic STM tip structures on such measurements and establish, with a model calculation, the presence of a tunneling interference effect within an STM junction that induces energy-dependent symmetry-breaking features in the conductance maps. We experimentally confirm this phenomenon on different correlated electron systems, including measurements in the pseudogap state of Bi-2212, showing that the apparent nematic behavior of the imaged crystal lattice is likely not due to nematic order but is related to how a realistic STM tip probes the band structure of a material. We further establish that this interference effect can be used as a sensitive probe of changes in the momentum structure of the samples quasiparticles as a function of energy.
As emerging topological nodal-line semimetals, the family of ZrSiX (X = O, S, Se, Te) has attracted broad interests in condensed matter physics due to their future applications in spintonics. Here, we apply a scanning tunneling microscopy (STM) to st udy the structural symmetry and electronic topology of ZrSiSe. The glide mirror symmetry is verified by quantifying the lattice structure of the ZrSe bilayer based on bias selective topographies. The quasiparticle interference analysis is used to identify the band structure of ZrSiSe. The nodal line is experimentally determined at $sim$ 250 meV above the Fermi level. An extra surface state Dirac point at $sim$ 400 meV below the Fermi level is also determined. Our STM measurement provides a direct experimental evidence of the nodal-line state in the family of ZrSiX.
106 - Mihaela Vatasescu 2018
Non-Markovian quantum evolution of the electronic subsystem in a laser-driven molecule is characterized through the appearance of negative decoherence rates in the canonical form of the electronic master equation. For a driven molecular system descri bed in a bipartite Hilbert space H=Hel x Hvib of dimension 2 x Nv, we derive the canonical form of the electronic master equation, deducing the canonical measures of non-Markovianity and the Bloch volume of accessible states. We find that one of the decoherence rates is always negative, accounting for the inherent non-Markovian character of the electronic evolution in the vibrational environment. Enhanced non-Markovian behavior, characterized by two negative decoherence rates, appears if there is a coupling between the electronic states g, e, such that the evolution of the electronic populations obeys d(PgPe)/dt > 0. Non-Markovianity of the electronic evolution is analyzed in relation to temporal behaviors of the electronic-vibrational entanglement and electronic coherence, showing that enhanced non-Markovian behavior accompanies entanglement increase. Taking as an example the coupling of two electronic states by a laser pulse in the Cs2 molecule, we analyze non-Markovian dynamics under laser pulses of various strengths, finding that the weaker pulse stimulates the bigger amount of non-Markovianity. We show that increase of the electronic-vibrational entanglement over a time interval is correlated to the growth of the total amount of non-Markovianity calculated over the same interval using canonical measures and connected with the increase of the Bloch volume. After the pulse, non-Markovian behavior is correlated to electronic coherence, such that vibrational motion in the electronic potentials which diminishes the nuclear overlap, implicitly increasing the linear entropy of entanglement, brings a memory character to dynamics.
Following the intense studies on topological insulators, significant efforts have recently been devoted to the search for gapless topological systems. These materials not only broaden the topological classification of matter but also provide a conden sed matter realization of various relativistic particles and phenomena previously discussed mainly in high energy physics. Weyl semimetals host massless, chiral, low-energy excitations in the bulk electronic band structure, whereas a symmetry protected pair of Weyl fermions gives rise to massless Dirac fermions. We employed scanning tunneling microscopy/spectroscopy to explore the behavior of electronic states both on the surface and in the bulk of topological semimetal phases. By mapping the quasiparticle interference and emerging Landau levels at high magnetic field in Dirac semimetals Cd$_3$As$_2$ and Na$_3$Bi, we observed extended Dirac-like bulk electronic bands. Quasiparticle interference imaged on Weyl semimetal TaAs demonstrated the predicted momentum dependent delocalization of Fermi arc surface states in the vicinity of the surface-projected Weyl nodes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا