ترغب بنشر مسار تعليمي؟ اضغط هنا

A unified description of the hidden-charm tetraquark states $Z_{cs}(3985)$, $Z_c(3900)$ and $X(4020)$

76   0   0.0 ( 0 )
 نشر من قبل Zhi-Hui Guo
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The newly observed hidden-charm tetraquark state $Z_{cs}(3985)$, together with $Z_c(3900)$ and $X(4020)$, are studied in the combined theoretical framework of the effective range expansion, compositeness relation and the decay width saturation. The elastic effective-range-expansion approach leads to sensible results for the scattering lengths, effective ranges and the compositeness coefficients, $i.e.$, the probabilities to find the two-charm-meson molecule components in the tetraquark states. The coupled-channel formalism by including the $J/psipi$ and $Dbar{D}^*/bar{D}D^*$ to fulfill the constraints of the compositeness relation and the decay width, confirms the elastic effective-range-expansion results for the $Z_c(3900)$, by using the experimental inputs for the ratios of the decay widths between $Dbar{D}^*/bar{D}D^*$ and $J/psipi$. With the results from the elastic effective-range-expansion study as input for the compositeness, we generalize the discussions to the $Z_{cs}(3985)$ by including the $J/psi K^{-}$ and $D_s^{-}D^{*0}/D_s^{*-}D^{0}$, and predict the partial decay widths of the $J/psi K^{-}$. Similar calculations are also carried out for the $X(4020)$ by including the $h_cpi$ and $D^*bar{D}^*$, and the partial decay widths of the $h_cpi$ is predicted. Our results can provide useful guidelines for future experimental measurements.



قيم البحث

اقرأ أيضاً

New data from BESIII and LHCb show the existence of resonances with strangeness filling multiplets of the broken SU(3)_f symmetry, with the pattern predicted by the quark model. This is the case of the newly discovered Z_{cs} (3985) and Z_{cs}(4003), which have a natural accommodation in the tetraquark picture, as shown in this note. The quasi-degeneracy between Z_{cs} (3985) and Z_{cs}(4003) reproduces, in the strange sector, the situation observed with X(3872) and Z_c(3900). This represents a significative score in favor of the tetraquark scheme.
Very recently, the BESIII collaboration reported a charged hidden-charm structure with strangeness in the recoil mass of $K^+$ of a process $e^+e^-to D_s^{*-}D^0K^+$ or $D_s^{-}D^{*0}K^+$, which is named as $Z_{cs}(3985)^{-}$. The newly observed char ged structure can be treated as a partner structure with strangeness of well-known $Z_{c}(3885)^{-}$ reported in a process $e^+e^-to D^{*-}D^0pi^+$. In this work, we propose a novel picture to understand the nature of $Z_{cs}(3985)$. By performing a combined analysis for the line shape of the recoil mass distribution of $K^+$ at five energy points $sqrt{s}=4.628, 4.641, 4.661, 4.681, 4.698$ GeV, we find that the $Z_{cs}(3985)$ can be explained as a reflection structure of charmed-strange meson $D_{s2}^{*}(2573)$, which is produced from the open-charm decay of $Y(4660)$ with a $D_s^*$ meson. Furthermore, we predicted the angular distribution of final state $D_s^{*-}$ in process $e^+e^-to D_s^{*-}D^0K^+$ based on our proposed reaction mechanism, which may be an essential criterion to test the non-resonant nature of $Z_{cs}(3985)$ further.
Assuming the newly observed $Z_c(3900)$ to be a molecular state of $Dbar D^*(D^{*} bar D)$, we calculate the partial widths of $Z_c(3900)to J/psi+pi;; psi+pi;; eta_c+rho$ and $Dbar D^*$ within the light front model (LFM). $Z_c(3900)to J/psi+pi$ is th e channel by which $Z_c(3900)$ was observed, our calculation indicates that it is indeed one of the dominant modes whose width can be in the range of a few MeV depending on the model parameters. Similar to $Z_b$ and $Z_b$, Voloshin suggested that there should be a resonance $Z_c$ at 4030 MeV which can be a molecular state of $D^*bar D^*$. Then we go on calculating its decay rates to all the aforementioned final states and as well the $D^*bar D^*$. It is found that if $Z_c(3900)$ is a molecular state of ${1oversqrt 2}(Dbar D^*+D^*bar D)$, the partial width of $Z_c(3900)to Dbar D^*$ is rather small, but the rate of $Z_c(3900)topsi(2s)pi$ is even larger than $Z_c(3900)to J/psipi$. The implications are discussed and it is indicated that with the luminosity of BES and BELLE, the experiments may finally determine if $Z_c(3900)$ is a molecular state or a tetraquark.
The purpose of the present study is to explore the mass spectrum of the hidden charm tetraquark states within a diquark model. Proposing that a tetraquark state is composed of a diquark and an antidiquark, the masses of all possible $[qc][bar{q}bar{c }]$, $[sc][bar{s}bar{c}]$, and $[qc][bar{s}bar{c}]$ $left([sc][bar{q}bar{c}]right)$ hidden charm tetraquark states are systematically calculated by use of an effective Hamiltonian, which contains color, spin, and flavor dependent interactions. Apart from the $X(3872)$, $Z(3900)$, $chi_{c2}(3930)$, and $X(4350)$ which are taken as input to fix the model parameters, the calculated results support that the $chi_{c0}(3860)$, $X(4020)$, $X(4050)$ are $[qc][bar{q}bar{c}]$ states with $I^GJ^{PC}=0^+0^{++}$, $1^+1^{+-}$, and $1^-2^{++}$, respectively, the $chi_{c1}(4274)$ is an $[sc][bar{s}bar{c}]$ state with $I^GJ^{PC}=0^+1^{++}$, the $X(3940)$ is a $[qc][bar{q}bar{c}]$ state with $I^GJ^{PC}=1^-0^{++}$ or $1^-1^{++}$, the $Z_{cs}(3985)^-$ is an $[sc][bar{q}bar{c}]$ state with $J^{P}=0^{+}$ or $1^+$, and the $Z_{cs}(4000)^+$ and $Z_{cs}(4220)^+$ are $[qc][bar{s}bar{c}]$ states with $J^{P}=1^{+}$. Predictions for other possible tetraquark states are also given.
We study e+e- --> pi+pi-h_c at center-of-mass energies from 3.90 GeV to 4.42 GeV using data samples collected with the BESIII detector operating at the Beijing Electron Positron Collider. The Born cross sections are measured at 13 energies, and are f ound to be of the same order of magnitude as those of e+e- --> pi+pi-J/psi but with a different line shape. In the pi^pm h_c mass spectrum, a distinct structure, referred to as Z_c(4020), is observed at 4.02 GeV/c^2. The Z_c(4020) carries an electric charge and couples to charmonium. A fit to the pi^pm h_c invariant mass spectrum, neglecting possible interferences, results in a mass of (4022.9pm 0.8pm 2.7) MeV/c^2 and a width of (7.9pm 2.7pm 2.6) MeV for the Z_c(4020), where the first errors are statistical and the second systematic. No significant Z_c(3900) signal is observed, and upper limits on the Z_c(3900) production cross sections in pi^pm h_c at center-of-mass energies of 4.23 and 4.26 GeV are set.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا