ﻻ يوجد ملخص باللغة العربية
In current paper, we put forward a reaction-diffusion system for West Nile virus in spatial heterogeneous and time almost periodic environment with free boundaries to investigate the influences of the habitat differences and seasonal variations on the propagation of West Nile virus. The existence, uniqueness and regularity estimates of the global solution for this disease model are given. Focused on the effects of spatial heterogeneity and time almost periodicity, we apply the principal Lyapunov exponent $lambda(t)$ with time $t$ to get the initial infected domain threshold $L^*$ to analyze the long-time dynamical behaviors of the solution for this almost periodic West Nile virus model and give the spreading-vanishing dichotomy regimes of the disease. Especially, we prove that the solution for this West Nile virus model converges to a time almost periodic function locally uniformly for $x$ in $mathbb R$ when the spreading occurs, which is driven by spatial differences and seasonal recurrence. Moreover, the initial disease infected domain and the front expanding rate have momentous impacts on the permanence and extinction of the epidemic disease. Eventually, numerical simulations identify our theoretical results.
This paper aims to explore the temporal-spatial spreading and asymptotic behaviors of West Nile virus by a reaction-advection-diffusion system with free boundaries, especially considering the impact of advection term on the extinction and persistence
This paper is concerned with a simplified epidemic model for West Nile virus in a heterogeneous time-periodic environment. By means of the model, we will explore the impact of spatial heterogeneity of environment and temporal periodicity on the persi
This manuscript extends the analysis of a much studied singularly perturbed three-component reaction-diffusion system for front dynamics in the regime where the essential spectrum is close to the origin. We confirm a conjecture from a preceding paper
We study the long time behavior of solutions of the non-autonomous Reaction-Diffusion equation defined on the entire space R^n when external terms are unbounded in a phase space. The existence of a pullback global attractor for the equation is establ
Spatially periodic reaction-diffusion equations typically admit pulsating waves which describe the transition from one steady state to another. Due to the heterogeneity, in general such an equation is not invariant by rotation and therefore the speed