ﻻ يوجد ملخص باللغة العربية
The existing decoy-state quantum key distribution (QKD) beating photon-number-splitting (PNS) attack provides a more accurate method to estimate secure key rate, while it still considers that only single-photon pulses can generate secure keys in any case. However, multiphoton pulses can also generate secure keys if we can confirm that there is no attack. In this paper, under the null hypothesis of no PNS attack, we first determine whether there is an attack or not by retrieving the missing information of the existing decoy-state protocols, extract a Cauchy distribution statistic, and further provide a detection method and the Type I error probability. If the result is judged to be an attack, we can use the existing decoy-state method and the GLLP formula to estimate secure key rate. Otherwise, all pulses received including both single-photon pulses and multiphoton pulses, can be used to generate the keys and we give the secure key rate in this case. Finally, the associated experiments we performed (i.e., the significance level is $5%$) show the correctness of our method.
Quantum cryptography or, more precisely, quantum key distribution (QKD), is one of the advanced areas in the field of quantum technologies. The confidentiality of keys distributed with the use of QKD protocols is guaranteed by the fundamental laws of
We develop an improvement to the weak laser pulse BB84 scheme for quantum key distribution, which utilizes entanglement to improve the security of the scheme and enhance its resilience to the photon-number-splitting attack. This protocol relies on th
Information-theoretical security of quantum key distribution (QKD) has been convincingly proven in recent years and remarkable experiments have shown the potential of QKD for real world applications. Due to its unique capability of combining high key
Twin-field quantum key distribution (TF-QKD), which is immune to all possible detector side channel attacks, enables two remote legitimate users to perform secure communications without quantum repeaters. With the help of a central node, TF-QKD is ex
Decoy state protocols are a useful tool for many quantum key distribution systems implemented with weak coherent pulses, allowing significantly better secret bit rates and longer maximum distances. In this paper we present a method to numerically fin