ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-phase coexistence in binary charged lipid membranes in hypotonic solution

115   0   0.0 ( 0 )
 نشر من قبل Naofumi Shimokawa
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the phase separation of dioleoylphosphatidylserine (DOPS) and dipalmitoylphosphatidylcholine (DPPC) in giant unilamellar vesicles in hypotonic solution using fluorescence and confocal laser scanning microscopy. Although phase separation in charged lipid membranes is generally suppressed by the electrostatic repulsion between the charged headgroups, osmotic stress can promote the formation of charged lipid domains. Interestingly, we observed three-phase coexistence even in DOPS/DPPC binary lipid mixtures. The three phases were DPPC-rich, dissociated DOPS-rich, and nondissociated DOPS-rich phases. The two forms of DOPS were found to coexist owing to the ionization of the DOPS headgroup, such that the system could be regarded as quasi-ternary. The three formed phases with differently ionized DOPS domains were successfully identified experimentally by monitoring the adsorption of positively charged particles. In addition, coarse-grained molecular dynamics simulations confirmed the stability of the three-phase coexistence. Attraction mediated by hydrogen bonding between protonated DOPS molecules and reduction of the electrostatic interactions at the domain boundaries stabilized the three-phase coexistence.



قيم البحث

اقرأ أيضاً

251 - S. Nowak , T. Chou 2010
When a ligand that is bound to an integral membrane receptor is pulled, the membrane and the underlying cytoskeleton can deform before either the membrane delaminates from the cytoskeleton or the ligand detaches from the receptor. If the membrane del aminates from the cytoskeleton, it may be further extruded and form a membrane tether. We develop a phenomenological model for this processes by assuming that deformations obey Hookes law up to a critical force at which the cell membrane locally detaches from the cytoskeleton and a membrane tether forms. We compute the probability of tether formation and show that they can be extruded only within an intermediate range of force loading rates and pulling velocities. The mean tether length that arises at the moment of ligand detachment is computed as are the force loading rates and pulling velocities that yield the longest tethers.
134 - S.I. Mukhin , B.B. Kheyfets 2014
Critical lateral pressure for a pore formation and phase diagram of porous membrane are derived analytically as functions of the microscopic parameters of the lipid chains. The derivation exploits path-integral calculation of the free energy of the e nsembles of semi-flexible strings and rigid rods that mimic the hydrophobic tails of lipids in the lipid bilayers and bolalipid membranes respectively. Analytical expressions for the area stretch/compressibility moduli of the membranes are derived in both models.
The membrane curvature of cells and intracellular compartments continuously adapts to enable cells to perform vital functions, from cell division to signal trafficking. Understanding how membrane geometry affects these processes in vivo is challengin g because of the membrane complexity as well as the short time and small length scales involved. By contrast, in vitro model membranes with engineered curvature provide a versatile platform for this investigation and applications to biosensing and biocomputing. However, a general route to the fabrication of lipid membranes with prescribed curvature and high spatial resolution is still missing. Here, we present a strategy that overcomes these challenges and achieve lipid membranes with designed shape by combining 3D micro-printing and replica-molding lithography to create scaffolds with virtually any geometry and high spatial resolution. The resulting supported lipid membranes are homogeneous, fluid, and can form chemically distinct lipid domains. These features are essential for understanding curvature-dependent cellular processes and developing programmable bio-interfaces for living cells and nanostructures.
Unravelling the physical mechanisms behind the organisation of lipid domains is a central goal in cell biology and membrane biophysics. Previous studies on cells and model lipid bilayers featuring phase-separated domains found an intricate interplay between the membrane geometry and its chemical composition. However, the lack of a model system with simultaneous control over the membrane shape and conservation of its composition precluded a fundamental understanding of curvature-induced effects. Here, we present a new class of multicomponent vesicles supported by colloidal scaffolds of designed shape. We find that the domain composition adapts to the geometry, giving rise to a novel antimixed state. Theoretical modelling allowed us to link the pinning of domains by regions of high curvature to the material parameters of the membrane. Our results provide key insights into the phase separation of cellular membranes and on curved surfaces in general.
We consider a mixture of one neutral and two oppositely charged types of molecules confined to a surface. Using analytical techniques and molecular dynamics simulations, we construct the phase diagram of the system and exhibit the coexistence between a patterned solid phase and a charge-dilute phase. The patterns in the solid phase arise from competition between short-range immiscibility and long-range electrostatic attractions between the charged species. The coexistence between phases leads to observations of stable patterned domains immersed in a neutral matrix background.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا