ﻻ يوجد ملخص باللغة العربية
This paper considers the secrecy performance of several schemes for multi-antenna transmission to single-antenna users with full-duplex (FD) capability against randomly distributed single-antenna eavesdroppers (EDs). These schemes and related scenarios include transmit antenna selection (TAS), transmit antenna beamforming (TAB), artificial noise (AN) from the transmitter, user selection based their distances to the transmitter, and colluding and non-colluding EDs. The locations of randomly distributed EDs and users are assumed to be distributed as Poisson Point Process (PPP). We derive closed form expressions for the secrecy outage probabilities (SOP) of all these schemes and scenarios. The derived expressions are useful to reveal the impacts of various environmental parameters and users choices on the SOP, and hence useful for network design purposes. Examples of such numerical results are discussed.
Non-orthogonal multiple access (NOMA) and massive multiple-input multiple-output (MIMO) systems are highly efficient. Massive MIMO systems are inherently resistant to passive attackers (eavesdroppers), thanks to transmissions directed to the desired
In this paper, an extended large wireless network under the secrecy constraint is considered. In contrast to works which use idealized assumptions, a more realistic network situation with unknown eavesdroppers locations is investigated: the legitimat
In this paper, we study Full Duplex (FD) Multiple-Input Multiple-Output (MIMO) radios for simultaneous data communication and control information exchange. Capitalizing on a recently proposed FD MIMO architecture combining digital transmit and receiv
Although the hardware complexity of the analog self-interference canceller in full duplex Multiple Input Multiple Output (MIMO) designs does not necessarily scale with the number of transceiver antennas, exploiting the benefits of analog cancellation
In this paper, user detection performance of a grant-free uplink transmission in a large scale antenna system is analyzed, in which a general grant-free multiple access is considered as the system model and Zadoff-Chu sequence is used for the uplink