ﻻ يوجد ملخص باللغة العربية
This paper is devoted to condition numbers of the multidimensional total least squares problem with linear equality constraint (TLSE). Based on the perturbation theory of invariant subspace, the TLSE problem is proved to be equivalent to a multidimensional unconstrained weighed total least squares problem in the limit sense. With a limit technique, Kronecker-product-based formulae for normwise, mixed and componentwise condition numbers of the minimum Frobenius norm TLSE solution are given. Compact upper bounds of these condition numbers are provided to reduce the storage and computation cost. All expressions and upper bounds of these condition numbers unify the ones for the single-dimensional TLSE problem and multidimensional total least squares problem. Some numerical experiments are performed to illustrate our results.
This paper is devoted to condition numbers of the total least squares problem with linear equality constraint (TLSE). With novel limit techniques, closed formulae for normwise, mixed and componentwise condition numbers of the TLSE problem are derived
We consider the problem of efficiently solving large-scale linear least squares problems that have one or more linear constraints that must be satisfied exactly. Whilst some classical approaches are theoretically well founded, they can face difficult
We derive closed formulas for the condition number of a linear function of the total least squares solution. Given an over determined linear system Ax=b, we show that this condition number can be computed using the singular values and the right singu
We present a novel greedy Gauss-Seidel method for solving large linear least squares problem. This method improves the greedy randomized coordinate descent (GRCD) method proposed recently by Bai and Wu [Bai ZZ, and Wu WT. On greedy randomized coordin
With a greedy strategy to construct control index set of coordinates firstly and then choosing the corresponding column submatrix in each iteration, we present a greedy block Gauss-Seidel (GBGS) method for solving large linear least squares problem.