ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic clay microstructures emerge via ion complexation waves

62   0   0.0 ( 0 )
 نشر من قبل Michael Whittaker
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Clays control carbon, water and nutrient transport in the lithosphere, promote cloud formation5 and lubricate fault slip through interactions among hydrated mineral interfaces. Clay mineral properties are difficult to model because their structures are disordered, curved and dynamic. Consequently, interactions at the clay mineral-aqueous interface have been approximated using electric double layer models based on single crystals of mica and atomistic simulations. We discover that waves of complexation dipoles at dynamically curving interfaces create an emergent long-range force that drives exfoliation and restacking over time- and length-scales that are not captured in existing models. Curvature delocalizes electrostatic interactions in ways that fundamentally differ from planar surfaces, altering the ratio of ions bound to the convex and concave sides of a layer. Multiple-scattering reconstruction of low-dose energy-filtered cryo electron tomography enabled direct imaging of ion complexes and electrolyte distributions at hydrated and curved mineral interfaces with {aa}ngstrom resolution over micron length scales. Layers exfoliate and restack abruptly and repeatedly over timescales that depend strongly on the counterion identity, demonstrating that the strong coupling between elastic, electrostatic and hydration forces in clays promote collective reorganization previously thought to be a feature only of active matter.



قيم البحث

اقرأ أيضاً

We report on the electrostatic complexation between polyelectrolyte-neutral copolymers and oppositely charged 6 nm-crystalline nanoparticles. For two different dispersions of oxide nanoparticles, the electrostatic complexation gives rise to the forma tion of stable nanoparticle clusters in the range 20 - 100 nm. It is found that inside the clusters, the particles are pasted together by the polyelectrolyte blocks adsorbed on their surface. Cryo-transmission electronic microscopy allows to visualize the clusters and to determine the probability distributions functions in size and in aggregation number. The comparison between light scattering and cryo-microscopy results suggests the existence of a polymer brush around the clusters.
147 - A.Shahin , Yogesh M Joshi 2012
Aqueous suspension of nanoclay Laponite undergoes structural evolution as a function of time, which enhances its elasticity and relaxation time. In this work we employ effective time approach to investigate long term relaxation dynamics by carrying o ut creep experiments. Typically we observe that the monotonic evolution of elastic modulus shifts to lower aging times while maxima in viscous modulus gets progressively broader for experiments carried out on a later date since preparation (idle time) of nanoclay suspension. Application of effective time theory produces superposition of all the creep curves irrespective of their initial state. The resulting dependence of relaxation time on aging time shows very strong hyper aging dynamics at small idle times, which progressively weakens to demonstrate linear dependence in the limit of very large idle times. Remarkably this behavior of nanoclay suspension is akin to that observed for polymeric glasses. Consideration of aging as a first order process suggests that continued hyper-aging dynamics causes cessation of aging. The dependence of relaxation time on aging time, therefore, must attenuate eventually producing linear or weaker dependence on time in order to approach progressively low energy state in the limit of very large times as observed experimentally. We also develop a simple scaling model based on a concept of aging of an energy well, which qualitatively captures various experimental observations very well leading to profound insight into the hyper-aging dynamics of nano-clay suspensions.
In this work we study structural recovery of a soft glassy Laponite suspension by monitoring temporal evolution of elastic modulus under isothermal conditions as well as following step temperature jumps. Interestingly, evolution behavior under isothe rmal conditions indicates the rate, and not the path of structural recovery, to be dependent on temperature. The experiments carried out under temperature jump conditions however trace a different path of structural recovery, which shows strong dependence on temperature and the direction of change. Further investigation of the system suggests that this behavior can be attributed to restricted mobility of counterions associated with Laponite particle at the time of temperature change, which do not allow counterion concentration to reach equilibrium value associated with the changed temperature. Interestingly this effect is observed to be comparable with other glassy molecular and soft materials, which while evolve in a self-similar fashion under isothermal conditions, show asymmetric behavior upon temperature change.
Understanding the rheology of colloidal suspensions is crucial in the formulation of a wide selection of industry-relevant products. To characterise the viscoelastic behaviour of these soft materials, one can analyse the microscopic dynamics of collo idal tracers diffusing through the host fluid and generating local deformations and stresses. This technique, referred to as microrheology, links the bulk rheology of fluids to the microscopic dynamics at the particle scale. If tracers are subjected to external forces, rather than freely diffusing, it is called active microrheology. Motivated by the impact of microrheology in providing information on local structure in complex systems such as colloidal glasses, active matter or biological systems, we have extended the dynamic Monte Carlo (DMC) technique to investigate active microrheology in colloids. The original DMC framework, able to accurately describe the Brownian dynamics of colloids at equilibrium, is here reconsidered and expanded to describe the effects of an external force pulling a tracer embedded in isotropic colloidal suspensions at different densities. To this end, we studied the dynamics of a spherical tracer dragged by a constant external force through a bath of spherical and rod-like particles of comparable size. We could extract valuable details on its effective friction coefficient, being constant at small and large values of the external force, but otherwise displaying a nonlinear behaviour that indicates the occurrence of a force-thinning regime. Our DMC simulation results are in excellent quantitative agreement with past Langevin dynamics simulations and theoretical works for the bath of spherical colloids. The bath of rod-like particles is studied in the isotropic phase, and displays an example where DMC is more convenient than Brownian or Langevin dynamics, in this case in dealing with particle rotation.
Na-montmorillonite is a natural clay mineral and is available in abundance in nature. The aqueous dispersions of charged and anisotropic platelets of this mineral exhibit non-ergodic kinetically arrested states ranging from soft glassy phases dominat ed by interparticle repulsions to colloidal gels stabilized by salt induced attractive interactions. When the salt concentration in the dispersing medium is varied systematically, viscoelasticity and yield stress of the dispersion show non-monotonic behavior at a critical salt concentration, thus signifying a morphological change in the dispersion microstructures. We directly visualize the microscopic structures of these kinetically arrested phases using cryogenic scanning electron microscopy. We observe the existence of honeycomb-like network morphologies for a wide range of salt concentrations. The transition of the gel morphology, dominated by overlapping coin (OC) and house of cards (HoC) associations of clay particles at low salt concentrations to a new network structure dominated by face-face coagulation of platelets, is observed across the critical salt concentration. We further assess the stability of these gels under gravity using electroacoustics. This study, performed for concentrated clay dispersions for a wide concentration range of externally added salt, is useful in our understanding of many geophysical phenomena that involve the salt induced aggregation of natural clay minerals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا