ترغب بنشر مسار تعليمي؟ اضغط هنا

A comparison between X-shooter spectra and PHOENIX models across the HR-diagram

100   0   0.0 ( 0 )
 نشر من قبل Ariane Lan\\c{c}on
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The path towards robust near-infrared extensions of stellar population models involves the confrontation between empirical and synthetic stellar spectral libraries across the wavelength ranges of photospheric emission. [...] With its near-UV to near-IR coverage, the X-shooter Spectral Library (XSL) allows us to examine to what extent models succeed in reproducing stellar energy distributions (SEDs) and stellar absorption line spectra simultaneously. This study compares the stellar spectra of XSL with the PHOENIX spectra of the Gottingen Spectral Library. The comparison is carried out both separately in the three arms of the X-shooter spectrograph, and jointly across the whole spectrum. When adopting the stellar parameters published with data release DR2 of XSL, we find that the SEDs of the models are consistent with those of the data at Teff > 5000 K. Below 5000 K, there are significant discrepancies in the SEDs. When leaving the stellar parameters free to adjust, satisfactory representations of the SEDs are obtained down to about 4000 K. However, in particular below 5000 K and in the UVB spectral range, strong local residuals associated with intermediate resolution spectral features are then seen; the necessity of a compromise between reproducing the line spectra and reproducing the SEDs leads to dispersion between the parameters favored by various spectral ranges. We describe the main trends observed and we point out localized offsets between the parameters preferred in this global fit to the SEDs and the parameters in DR2. These depend in a complex way on position in the HR diagram (HRD). We estimate the effect of the offsets on bolometric corrections as a function of position in the HRD and use this for a brief discussion of their impact on the studies of stellar populations. [abridged]



قيم البحث

اقرأ أيضاً

Asteroseismology is a powerful tool that can precisely characterize the mass, radius, and other properties of field stars. However, our inability to properly model the near-surface layers of stars creates a frequency-dependent frequency difference be tween the observed and the modeled frequencies, usually referred to as the surface term. This surface term can add significant errors to the derived stellar properties unless removed properly. In this paper we simulate surface terms across a significant portion of the HR diagram, exploring four different masses ($M=0.8, 1.0, 1.2$, and $1.5$ M$_odot$) at five metallicities ($[rm{Fe/H}]=0.5, 0.0, -0.5 ,-1.0, and -1.5$) from main sequence to red giants for stars with $T_{rm{eff}}<6500 K$ and explore how well the most common ways of fitting and removing the surface term actually perform. We find that the two-term model proposed by Ball & Gizon (2014) works much better than other models across a large portion of the HR diagram, including the red giants, leading us to recommend its use for future asteroseismic analyses.
The X-shooter Spectral Library (XSL) is an empirical stellar library at medium spectral resolution covering the wavelength range from 3000 AA to 24 800 AA. This library aims to provide a benchmark for stellar population studies. In this work, we pres ent a uniform set of stellar atmospheric parameters, effective temperatures, surface gravities, and iron abundances for 754 spectra of 616 XSL stars. We used the full-spectrum fitting package ULySS with the empirical MILES library as reference to fit the ultraviolet-blue (UVB) and visible (VIS) spectra. We tested the internal consistency and we compared our results with compilations from the literature. The stars cover a range of effective temperature 2900 < Teff < 38 000 K, surface gravity 0 < log g < 5.7, and iron abundance -2.5 < [Fe/H] < +1.0, with a couple of stars extending down to [Fe/H] = -3.9. The precisions of the measurements for the G- and K-type stars are 0.9%, 0.14, and 0.06 in Teff, log g, and [Fe/H], respectively. For the cool giants with log g < 1, the precisions are 2.1%, 0.21, and 0.22, and for the other cool stars these values are 1%, 0.14, and 0.10. For the hotter stars (Teff > 6500 K), these values are 2.6%, 0.20, and 0.10 for the three parameters.
We have analysed the [OI]6300 A line in a sample of 131 young stars with discs in the Lupus, Chamaeleon and signa Orionis star forming regions, observed with the X-shooter spectrograph at VLT. The stars have mass accretion rates spanning from 10^{-12 } to 10^{-7} Mo/yr. The line profile was deconvolved into a low velocity component (LVC, < 40 km/s) and a high velocity component (HVC, > 40 km/s ), originating from slow winds and high velocity jets, respectively. The LVC is by far the most frequent component, with a detection rate of 77%, while only 30% of sources have a HVC. The [OI]6300 luminosity of both the LVC and HVC, when detected, correlates with stellar and accretion parameters of the central sources (i.e. Lstar , Mstar , Lacc , Macc), with similar slopes for the two components. The line luminosity correlates better with the accretion luminosity than with the stellar luminosity or stellar mass. We suggest that accretion is the main drivers for the line excitation and that MHD disc-winds are at the origin of both components. In the sub-sample of Lupus sources observed with ALMA a relationship is found between the HVC peak velocity and the outer disc inclination angle, as expected if the HVC traces jets ejected perpendicularly to the disc plane. Mass loss rates measured from the HVC span from ~ 10^{-13} to ~10^{-7} Mo/yr. The corresponding Mloss/Macc ratio ranges from ~0.01 to ~0.5, with an average value of 0.07. However, considering the upper limits on the HVC, we infer a ratio < 0.03 in more than 40% of sources. We argue that most of these sources might lack the physical conditions needed for an efficient magneto-centrifugal acceleration in the star-disc interaction region. Systematic observations of populations of younger stars, that is, class 0/I, are needed to explore how the frequency and role of jets evolve during the pre-main sequence phase.
Localised modelling error in the near-surface layers of evolutionary stellar models causes the frequencies of their normal modes of oscillation to differ from those of actual stars with matching interior structures. These frequency differences are re ferred to as the asteroseismic surface term. Global stellar properties estimated via detailed constraints on individual mode frequencies have previously been shown to be robust with respect to different parameterisations of this surface term. It has also been suggested that this may be true of a broader class of nonparametric treatments. We examine systematic differences in inferred stellar properties with respect to different surface-term treatments, both for a statistically large sample of main-sequence stars, as well as for a sample of red giants, for which no such characterisation has previously been done. For main-sequence stars, we demonstrate that while masses and radii, and hence ages, are indeed robust to the choice of surface term, the inferred initial helium abundance $Y_0$ is sensitive to the choice of surface correction. This implies that helium-abundance estimates returned from detailed asteroseismology are methodology-dependent. On the other hand, for our red giant sample, nonparametric surface corrections return dramatically different inferred stellar properties than parametric ones. The nature of these differences suggests that such nonparametric methods should be preferred for evolved stars; this should be verified on a larger sample.
In this paper, we present a study of the Trapezium cluster in Orion. We analyze flux-calibrated VLT/MUSE spectra of 361 stars to simultaneously measure the spectral types, reddening, and the optical veiling due to accretion. We find that the extincti on law from Cardelli et al. (1989) with a total-to-selective extinction value of $R_{rm V}=$5.5 is more suitable for this cluster. For 68% of the sample the new spectral types are consistent with literature spectral types within 2 subclasses, but as expected, we derive systematically later types than the literature by one to two subclasses for the sources with significant accretion levels. Here we present an improved Hertzsprung-Russell (H-R) diagram of the Trapezium cluster, in which the contamination by optical veiling on spectral types and stellar luminosities has been properly removed. A comparison of the locations of the stars in the H-R diagram with the non-magnetic and magnetic pre-main sequence evolutionary tracks indicates an age of 1--2~Myr. The magnetic pre-main sequence evolutionary tracks can better explain the luminosities of the low-mass stars. In the H-R diagram, the cluster exhibits a large luminosity spread ($sigma$(Log~$L_{star}/L_{odot})sim$0.3). By collecting a sample of 14 clusters/groups with different ages, we find that the luminosity spread tends to be constant ($sigma$(Log~$L_{star}/L_{odot})sim$0.2--0.25) after 2~Myr, which suggests that age spread is not the main cause of the spread. There are $sim$0.1~dex larger luminosity spreads for the younger clusters, e.g., the Trapezium cluster, than the older clusters, which can be explained by the starspots, accretion history and circumstellar disk orientations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا