ترغب بنشر مسار تعليمي؟ اضغط هنا

An extension problem, trace Hardy and Hardys inequalities for Ornstein-Uhlenbeck operator

175   0   0.0 ( 0 )
 نشر من قبل Pritam Ganguly
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study an extension problem for the Ornstein-Uhlenbeck operator $L=-Delta+2xcdot abla +n$ and we obtain various characterisations of the solution of the same. We use a particular solution of that extension problem to prove a trace Hardy inequality for $L$ from which Hardys inequality for fractional powers of $L$ is obtained. We also prove an isometry property of the solution operator associated to the extension problem. Moreover, new $L^p-L^q$ estimates are obtained for the fractional powers of the Hermite operator.



قيم البحث

اقرأ أيضاً

219 - Guozhen Lu , Qiaohua Yang 2017
By using, among other things, the Fourier analysis techniques on hyperbolic and symmetric spaces, we establish the Hardy-Sobolev-Mazya inequalities for higher order derivatives on half spaces. The proof relies on a Hardy-Littlewood-Sobolev inequality on hyperbolic spaces which is of its independent interest. We also give an alternative proof of Benguria, Frank and Loss work concerning the sharp constant in the Hardy-Sobolev-Mazya inequality in the three dimensional upper half space. Finally, we show the sharp constant in the Hardy-Sobolev-Mazya inequality for bi-Laplacian in the upper half space of dimension five coincides with the Sobolev constant.
165 - Guozhen Lu , Qiaohua Yang 2017
We establish sharp Hardy-Adams inequalities on hyperbolic space $mathbb{B}^{4}$ of dimension four. Namely, we will show that for any $alpha>0$ there exists a constant $C_{alpha}>0$ such that [ int_{mathbb{B}^{4}}(e^{32pi^{2} u^{2}}-1-32pi^{2} u^{2})d V=16int_{mathbb{B}^{4}}frac{e^{32pi^{2} u^{2}}-1-32pi^{2} u^{2}}{(1-|x|^{2})^{4}}dxleq C_{alpha}. ] for any $uin C^{infty}_{0}(mathbb{B}^{4})$ with [ int_{mathbb{B}^{4}}left(-Delta_{mathbb{H}}-frac{9}{4}right)(-Delta_{mathbb{H}}+alpha)ucdot udVleq1. ] As applications, we obtain a sharpened Adams inequality on hyperbolic space $mathbb{B}^{4}$ and an inequality which improves the classical Adams inequality and the Hardy inequality simultaneously. The later inequality is in the spirit of the Hardy-Trudinger-Moser inequality on a disk in dimension two given by Wang and Ye [37] and on any convex planar domain by the authors [26]. The tools of fractional Laplacian, Fourier transform and the Plancherel formula on hyperbolic spaces and symmetric spaces play an important role in our work.
In this paper, we establish the sharp critical and subcritical trace Trudinger-Moser and Adams inequalities on the half spaces and prove the existence of their extremals through the method based on the Fourier rearrangement, harmonic extension and sc aling invariance. These trace Trudinger-Moser and Adams inequalities can be considered as the borderline case of the Sobolev trace inequalities of first and higher orders. Furthermore, we show the existence of the least energy solutions for a class of bi-harmonic equations with nonlinear Neumann boundary condition associated with the trace Adams inequalities.
For a general subcritical second-order elliptic operator $P$ in a domain $Omega subset mathbb{R}^n$ (or noncompact manifold), we construct Hardy-weight $W$ which is optimal in the following sense. The operator $P - lambda W$ is subcritical in $Omega$ for all $lambda < 1$, null-critical in $Omega$ for $lambda = 1$, and supercritical near any neighborhood of infinity in $Omega$ for any $lambda > 1$. Moreover, if $P$ is symmetric and $W>0$, then the spectrum and the essential spectrum of $W^{-1}P$ are equal to $[1,infty)$, and the corresponding Agmon metric is complete. Our method is based on the theory of positive solutions and applies to both symmetric and nonsymmetric operators. The constructed Hardy-weight is given by an explicit simple formula involving two distinct positive solutions of the equation $Pu=0$, the existence of which depends on the subcriticality of $P$ in $Omega$.
We prove, with a purely analytic technique, a one-side Liouville theorem for a class of Ornstein--Uhlenbeck operators ${mathcal L_0}$ in $mathbb{R}^N$, as a consequence of a Liouville theorem at $t=- infty$ for the corresponding Kolmogorov operator s ${mathcal L_0} - partial_t$ in $mathbb{R}^{N+1}$. In turn, this last result is proved as a corollary of a global Harnack inequality for non-negative solutions to $({mathcal L_0} - partial_t) u = 0$ which seems to have an independent interest in its own right. We stress that our Liouville theorem for ${mathcal L_0}$ cannot be obtained by a probabilistic approach based on recurrence if $N>2$. We provide a self-contained proof of a Liouville theorem involving recurrent Ornstein--Uhlenbeck stochastic processes in the Appendix.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا