ﻻ يوجد ملخص باللغة العربية
We consider the black hole information problem in an explicitly defined spacetime modelling black hole evaporation. Using this context we review basic aspects of the problem, with a particular effort to be unambiguous about subtle topics, for instance precisely what is meant by entropy in various circumstances. We then focus on questions of unitarity, and argue that commonly invoked semiclassical statements of long term, evaporation time, and Page time unitarity may all be violated even if physics is fundamentally unitary. This suggests that there is no horizon firewall. We discuss how the picture is modified for regular (nonsingular) evaporation models. We also compare our conclusions to recent holographic studies, and argue that they are mutually compatible.
An approach to black hole quantization is proposed wherein it is assumed that quantum coherence is preserved. A consequence of this is that the Penrose diagram describing gravitational collapse will show the same topological structure as flat Minkows
We analyze how a quantum-gravity-induced change in the number of thermal dimensions (through a modified dispersion relation) affects the geometry and the thermodynamics of a charged black hole. To that end we resort to Kiselevs solution as the impact
We investigate the evaporation process of a Kerr-de Sitter black hole with the Unruh-Hawking-like vacuum state, which is a realistic vacuum state modelling the evaporation process of a black hole originating from gravitational collapse. We also compu
We present, in an explicit form, the metric for all spherically symmetric Schwarzschild-Bach black holes in Einstein-Weyl theory. In addition to the black hole mass, this complete family of spacetimes involves a parameter that encodes the value of th
We discuss the near singularity region of the linear mass Vaidya metric for massless particles with non-zero angular momentum. In particular we look at massless geodesics with non-zero angular momentum near the vanishing point of a special subclass o