ﻻ يوجد ملخص باللغة العربية
Quantum reading provides a general framework where to formulate the statistical discrimination of quantum channels. Several paths have been taken for such a problem. However, there is much to be done in the avenue of optimizing channel discrimination using classical codes. At least two open questions can be pointed to: how to construct low complexity encoding schemes that are interesting for channel discrimination and, more importantly, how to develop capacity-achieving protocols. The aim of this paper is to present a solution to these questions using polar codes. Firstly, we characterize the rate and reliability of the channels under polar encoding. We also show that the error probability of the scheme proposed decays exponentially with respect to the code length. Lastly, an analysis of the optimal quantum states to be used as probes is given.
Polar codes are introduced for discrete memoryless broadcast channels. For $m$-user deterministic broadcast channels, polarization is applied to map uniformly random message bits from $m$ independent messages to one codeword while satisfying broadcas
Polar codes with memory (PCM) are proposed in this paper: a pair of consecutive code blocks containing a controlled number of mutual information bits. The shared mutual information bits of the succeeded block can help the failed block to recover. The
In this paper, we propose textit{selectively precoded polar (SPP) code}, built on top of Arikans capacity achieving polar codes. We provide the encoding and decoding scheme for SPP code. Simulation results show that for a target frame erasure rate (F
The concept of asymmetric entanglement-assisted quantum error-correcting code (asymmetric EAQECC) is introduced in this article. Codes of this type take advantage of the asymmetry in quantum errors since phase-shift errors are more probable than qudi
Polar codes, discovered by Ar{i}kan, are the first error-correcting codes with an explicit construction to provably achieve channel capacity, asymptotically. However, their error-correction performance at finite lengths tends to be lower than existin