ترغب بنشر مسار تعليمي؟ اضغط هنا

A Memory-Augmented Neural Network Model of Abstract Rule Learning

62   0   0.0 ( 0 )
 نشر من قبل Taylor Webb
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Human intelligence is characterized by a remarkable ability to infer abstract rules from experience and apply these rules to novel domains. As such, designing neural network algorithms with this capacity is an important step toward the development of deep learning systems with more human-like intelligence. However, doing so is a major outstanding challenge, one that some argue will require neural networks to use explicit symbol-processing mechanisms. In this work, we focus on neural networks capacity for arbitrary role-filler binding, the ability to associate abstract roles to context-specific fillers, which many have argued is an important mechanism underlying the ability to learn and apply rules abstractly. Using a simplified version of Ravens Progressive Matrices, a hallmark test of human intelligence, we introduce a sequential formulation of a visual problem-solving task that requires this form of binding. Further, we introduce the Emergent Symbol Binding Network (ESBN), a recurrent neural network model that learns to use an external memory as a binding mechanism. This mechanism enables symbol-like variable representations to emerge through the ESBNs training process without the need for explicit symbol-processing machinery. We empirically demonstrate that the ESBN successfully learns the underlying abstract rule structure of our task and perfectly generalizes this rule structure to novel fillers.



قيم البحث

اقرأ أيضاً

Recent progress in deep learning is revolutionizing the healthcare domain including providing solutions to medication recommendations, especially recommending medication combination for patients with complex health conditions. Existing approaches eit her do not customize based on patient health history, or ignore existing knowledge on drug-drug interactions (DDI) that might lead to adverse outcomes. To fill this gap, we propose the Graph Augmented Memory Networks (GAMENet), which integrates the drug-drug interactions knowledge graph by a memory module implemented as a graph convolutional networks, and models longitudinal patient records as the query. It is trained end-to-end to provide safe and personalized recommendation of medication combination. We demonstrate the effectiveness and safety of GAMENet by comparing with several state-of-the-art methods on real EHR data. GAMENet outperformed all baselines in all effectiveness measures, and also achieved 3.60% DDI rate reduction from existing EHR data.
Traditional neural networks require enormous amounts of data to build their complex mappings during a slow training procedure that hinders their abilities for relearning and adapting to new data. Memory-augmented neural networks enhance neural networ ks with an explicit memory to overcome these issues. Access to this explicit memory, however, occurs via soft read and write operations involving every individual memory entry, resulting in a bottleneck when implemented using the conventional von Neumann computer architecture. To overcome this bottleneck, we propose a robust architecture that employs a computational memory unit as the explicit memory performing analog in-memory computation on high-dimensional (HD) vectors, while closely matching 32-bit software-equivalent accuracy. This is achieved by a content-based attention mechanism that represents unrelated items in the computational memory with uncorrelated HD vectors, whose real-valued components can be readily approximated by binary, or bipolar components. Experimental results demonstrate the efficacy of our approach on few-shot image classification tasks on the Omniglot dataset using more than 256,000 phase-change memory devices. Our approach effectively merges the richness of deep neural network representations with HD computing that paves the way for robust vector-symbolic manipulations applicable in reasoning, fusion, and compression.
Accurate forward modeling is important for solving inverse problems. An inaccurate wave-equation simulation, as a forward operator, will offset the results obtained via inversion. In this work, we consider the case where we deal with incomplete physi cs. One proxy of incomplete physics is an inaccurate discretization of Laplacian in simulation of wave equation via finite-difference method. We exploit intrinsic one-to-one similarities between timestepping algorithm with Convolutional Neural Networks (CNNs), and propose to intersperse CNNs between low-fidelity timesteps. Augmenting neural networks with low-fidelity timestepping algorithms may allow us to take large timesteps while limiting the numerical dispersion artifacts. While simulating the wave-equation with low-fidelity timestepping algorithm, by correcting the wavefield several time during propagation, we hope to limit the numerical dispersion artifact introduced by a poor discretization of the Laplacian. As a proof of concept, we demonstrate this principle by correcting for numerical dispersion by keeping the velocity model fixed, and varying the source locations to generate training and testing pairs for our supervised learning algorithm.
Neural machine translation (NMT) has achieved notable success in recent times, however it is also widely recognized that this approach has limitations with handling infrequent words and word pairs. This paper presents a novel memory-augmented NMT (M- NMT) architecture, which stores knowledge about how words (usually infrequently encountered ones) should be translated in a memory and then utilizes them to assist the neural model. We use this memory mechanism to combine the knowledge learned from a conventional statistical machine translation system and the rules learned by an NMT system, and also propose a solution for out-of-vocabulary (OOV) words based on this framework. Our experiments on two Chinese-English translation tasks demonstrated that the M-NMT architecture outperformed the NMT baseline by $9.0$ and $2.7$ BLEU points on the two tasks, respectively. Additionally, we found this architecture resulted in a much more effective OOV treatment compared to competitive methods.
Deep learning models require extensive architecture design exploration and hyperparameter optimization to perform well on a given task. The exploration of the model design space is often made by a human expert, and optimized using a combination of gr id search and search heuristics over a large space of possible choices. Neural Architecture Search (NAS) is a Reinforcement Learning approach that has been proposed to automate architecture design. NAS has been successfully applied to generate Neural Networks that rival the best human-designed architectures. However, NAS requires sampling, constructing, and training hundreds to thousands of models to achieve well-performing architectures. This procedure needs to be executed from scratch for each new task. The application of NAS to a wide set of tasks currently lacks a way to transfer generalizable knowledge across tasks. In this paper, we present the Multitask Neural Model Search (MNMS) controller. Our goal is to learn a generalizable framework that can condition model construction on successful model searches for previously seen tasks, thus significantly speeding up the search for new tasks. We demonstrate that MNMS can conduct an automated architecture search for multiple tasks simultaneously while still learning well-performing, specialized models for each task. We then show that pre-trained MNMS controllers can transfer learning to new tasks. By leveraging knowledge from previous searches, we find that pre-trained MNMS models start from a better location in the search space and reduce search time on unseen tasks, while still discovering models that outperform published human-designed models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا