ترغب بنشر مسار تعليمي؟ اضغط هنا

Explaining electron and muon $g-2$ anomalies in an Aligned 2-Higgs Doublet Model with Right-Handed Neutrinos

77   0   0.0 ( 0 )
 نشر من قبل Luigi Delle Rose
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explain anomalies currently present in various data samples used for the measurement of the anomalous magnetic moment of electron ($a_e$) and muon ($a_mu$) in terms of an Aligned 2-Higgs Doublet Model with right-handed neutrinos. The explanation is driven by one and two-loop topologies wherein a very light CP-odd neutral Higgs state ($A$) contributes significantly to $a_mu$ but negligibly to $a_e$, so as to revert the sign of the new physics corrections in the former case with respect to the latter, wherein the dominant contribution is due to a charged Higgs boson ($H^pm$) and heavy neutrinos with mass at the electroweak scale. For the region of parameter space of our new physics model which explains the aforementioned anomalies we also predict an almost background-free smoking-gun signature of it, consisting of $H^pm A$ production followed by Higgs boson decays yielding multi-$tau$ final states, which can be pursued at the Large Hadron Collider.



قيم البحث

اقرأ أيضاً

120 - Tao Han , Sin Kyu Kang , 2015
We study the Two-Higgs-Doublet Model with the aligned Yukawa sector (A2HDM) in light of the observed excess measured in the muon anomalous magnetic moment. We take into account the existing theoretical and experimental constraints with up-to-date val ues and demonstrate that a phenomenologically interesting region of parameter space exists. With a detailed parameter scan, we show a much larger region of viable parameter space in this model beyond the limiting case Type X 2HDM as obtained before. It features the existence of light scalar states with masses $3$ GeV $lesssim m_H^{} lesssim 50$ GeV, or $ 10$ GeV $lesssim m_A^{} lesssim 130$ GeV, with enhanced couplings to tau leptons. The charged Higgs boson is typically heavier, with $200$ GeV $ lesssim m^{}_{H^+} lesssim 630$ GeV. The surviving parameter space is forced into the CP-conserving limit by EDM constraints. Some Standard Model observables may be significantly modified, including a possible new decay mode of the SM-like Higgs boson to four taus. We comment on future measurements and direct searches for those effects at the LHC as tests of the model.
149 - Syuhei Iguro , Yuji Omura 2018
In this paper, we study the extended Standard Model (SM) with an extra Higgs doublet and right-handed neutrinos. If the symmetry to distinguish the two Higgs doublets is not assigned, flavor changing neutral currents (FCNCs) involving the scalars are predicted even at the tree level. We investigate the constraints on the FCNCs at the one-loop level, and especially study the semileptonic $B$ meson decays, e.g. $B to D^{(*)} tau u$ and $B to K^{(*)} ll$ processes, where the SM predictions are more than $2 sigma$ away from the experimental results. We also consider the flavor-violating couplings involving right-handed neutrinos and discuss if the parameters to explain the excesses of the semileptonic $B$ decays can resolve the discrepancy in the the anomalous muon magnetic moment. Based on the analysis, we propose the smoking-gun signals of our model at the LHC.
We show that one of the simplest extensions of the Standard Model, the addition of a second Higgs doublet, when combined with a dark sector singlet scalar, allows us to: $i)$ explain the long-standing anomalies in the Liquid Scintillator Neutrino Det ector (LSND) and MiniBooNE (MB) while maintaining compatibility with the null result from KARMEN, $ii)$ obtain, in the process, a portal to the dark sector, and $iii)$ comfortably account for the observed value of the muon $g-2$. Three singlet neutrinos allow for an understanding of observed neutrino mass-squared differences via a Type I seesaw, with two of the lighter states participating in the interaction in both LSND and MB. We obtain very good fits to energy and angular distributions in both experiments. We explain features of the solution presented here and discuss the constraints that our model must satisfy. We also mention prospects for future tests of its particle content.
Two of the most widely studied extensions of the Standard Model (SM) are $a)$ the addition of a new $U(1)$ symmetry to its existing gauge groups, and $b)$ the expansion of its scalar sector to incorporate a second Higgs doublet. We show that when com bined, they allow us to understand the electron-like event excess seen in the MiniBooNE (MB) experiment as well as account for the observed anomalous values of the muon magnetic moment. A light $Z$ associated with an additional $U(1)$ coupled to baryons and to the dark sector, with flavor non-universal couplings to leptons, in conjunction with a second Higgs doublet is capable of explaining the MB excess. The $Z$ obtains its mass from a dark singlet scalar, which mixes with the two Higgs doublets. Choosing benchmark parameter values, we show that $U(1)_{B-3L_tau}$, which is anomaly-free, and $U(1)_B$, both provide (phenomenologically) equally good solutions to the excess. We also point out the other (anomaly-free) $U(1)$ choices that may be possible upon fuller exploration of the parameter space. We obtain very good matches to the energy and angular distributions for neutrinos and anti-neutrinos in MB. The extended Higgs sector has two light CP-even scalars, $h$ and $H$, and their masses and couplings are such that in principle, both contribute to help explain the MB excess as well as the present observed values of the muon and electron $g-2$. We discuss the constraints on our model as well as future tests. Our work underlines the role that light scalars may play in understanding present-day low-energy anomalies. It also points to the possible existence of portals to the dark sector, i.e., a light gauge boson field $(Z)$ and a dark neutrino which mixes with the active neutrinos, as well as a dark sector light scalar which mixes with the extended Higgs sector.
In general two Higgs doublet models (2HDMs) without scalar flavour changing neutral couplings (SFCNC) in the lepton sector, the electron, muon and tau interactions can be decoupled in a robust framework, stable under renormalization group evolution. In this framework, the breaking of lepton flavour universality (LFU) goes beyond the mass proportionality, opening the possibility to accommodate a different behaviour among charged leptons. We analyze the electron and muon $(g-2)$ anomalies in the context of these general flavour conserving models in the leptonic sector (g$ell$FC). We consider two different models, I-g$ell$FC and II-g$ell$FC, in which the quark Yukawa couplings coincide, respectively, with the ones in type I and in type II 2HDMs. We find two types of solutions that fully reproduce both $(g-2)$ anomalies, and which are compatible with experimental constraints from LEP and LHC, from LFU, from flavour and electroweak physics, and with theoretical constraints in the scalar sector. In the first type of solution, all the new scalars have masses in the 1--2.5 TeV range, the vacuum expectation values (vevs) of both doublets are quite similar in magnitude, and both anomalies are dominated by two loop Barr-Zee contributions. This solution appears in both models. In a second type of solution, one loop contributions are dominant in the muon anomaly, all new scalars have masses below 1 TeV, and the ratio of vevs is in the range 10--100. The second neutral scalar $H$ is the lighter among the new scalars, with a mass in the 210--390 GeV range while the pseudoscalar $A$ is the heavier, with a mass in the range 400--900 GeV. The new charged scalar $H^pm$ is almost degenerate either with the scalar or with the pseudoscalar. This second type of solution only appears in the I-g$ell$FC model. Both solutions require the soft breaking of the $mathbb{Z}_{2}$ symmetry of the Higgs potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا