ﻻ يوجد ملخص باللغة العربية
We explain anomalies currently present in various data samples used for the measurement of the anomalous magnetic moment of electron ($a_e$) and muon ($a_mu$) in terms of an Aligned 2-Higgs Doublet Model with right-handed neutrinos. The explanation is driven by one and two-loop topologies wherein a very light CP-odd neutral Higgs state ($A$) contributes significantly to $a_mu$ but negligibly to $a_e$, so as to revert the sign of the new physics corrections in the former case with respect to the latter, wherein the dominant contribution is due to a charged Higgs boson ($H^pm$) and heavy neutrinos with mass at the electroweak scale. For the region of parameter space of our new physics model which explains the aforementioned anomalies we also predict an almost background-free smoking-gun signature of it, consisting of $H^pm A$ production followed by Higgs boson decays yielding multi-$tau$ final states, which can be pursued at the Large Hadron Collider.
We study the Two-Higgs-Doublet Model with the aligned Yukawa sector (A2HDM) in light of the observed excess measured in the muon anomalous magnetic moment. We take into account the existing theoretical and experimental constraints with up-to-date val
In this paper, we study the extended Standard Model (SM) with an extra Higgs doublet and right-handed neutrinos. If the symmetry to distinguish the two Higgs doublets is not assigned, flavor changing neutral currents (FCNCs) involving the scalars are
We show that one of the simplest extensions of the Standard Model, the addition of a second Higgs doublet, when combined with a dark sector singlet scalar, allows us to: $i)$ explain the long-standing anomalies in the Liquid Scintillator Neutrino Det
Two of the most widely studied extensions of the Standard Model (SM) are $a)$ the addition of a new $U(1)$ symmetry to its existing gauge groups, and $b)$ the expansion of its scalar sector to incorporate a second Higgs doublet. We show that when com
In general two Higgs doublet models (2HDMs) without scalar flavour changing neutral couplings (SFCNC) in the lepton sector, the electron, muon and tau interactions can be decoupled in a robust framework, stable under renormalization group evolution.