ترغب بنشر مسار تعليمي؟ اضغط هنا

GAN-based Recommendation with Positive-Unlabeled Sampling

333   0   0.0 ( 0 )
 نشر من قبل Yao Zhou
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recommender systems are popular tools for information retrieval tasks on a large variety of web applications and personalized products. In this work, we propose a Generative Adversarial Network based recommendation framework using a positive-unlabeled sampling strategy. Specifically, we utilize the generator to learn the continuous distribution of user-item tuples and design the discriminator to be a binary classifier that outputs the relevance score between each user and each item. Meanwhile, positive-unlabeled sampling is applied in the learning procedure of the discriminator. Theoretical bounds regarding positive-unlabeled sampling and optimalities of convergence for the discriminators and the generators are provided. We show the effectiveness and efficiency of our framework on three publicly accessible data sets with eight ranking-based evaluation metrics in comparison with thirteen popular baselines.



قيم البحث

اقرأ أيضاً

This paper defines a positive and unlabeled classification problem for standard GANs, which then leads to a novel technique to stabilize the training of the discriminator in GANs. Traditionally, real data are taken as positive while generated data ar e negative. This positive-negative classification criterion was kept fixed all through the learning process of the discriminator without considering the gradually improved quality of generated data, even if they could be more realistic than real data at times. In contrast, it is more reasonable to treat the generated data as unlabeled, which could be positive or negative according to their quality. The discriminator is thus a classifier for this positive and unlabeled classification problem, and we derive a new Positive-Unlabeled GAN (PUGAN). We theoretically discuss the global optimality the proposed model will achieve and the equivalent optimization goal. Empirically, we find that PUGAN can achieve comparable or even better performance than those sophisticated discriminator stabilization methods.
The purpose of the Session-Based Recommendation System is to predict the users next click according to the previous session sequence. The current studies generally learn user preferences according to the transitions of items in the users session sequ ence. However, other effective information in the session sequence, such as user profiles, are largely ignored which may lead to the model unable to learn the users specific preferences. In this paper, we propose a heterogeneous graph neural network-based session recommendation method, named SR-HetGNN, which can learn session embeddings by heterogeneous graph neural network (HetGNN), and capture the specific preferences of anonymous users. Specifically, SR-HetGNN first constructs heterogeneous graphs containing various types of nodes according to the session sequence, which can capture the dependencies among items, users, and sessions. Second, HetGNN captures the complex transitions between items and learns the item embeddings containing user information. Finally, to consider the influence of users long and short-term preferences, local and global session embeddings are combined with the attentional network to obtain the final session embedding. SR-HetGNN is shown to be superior to the existing state-of-the-art session-based recommendation methods through extensive experiments over two real large datasets Diginetica and Tmall.
Recommending appropriate algorithms to a classification problem is one of the most challenging issues in the field of data mining. The existing algorithm recommendation models are generally constructed on only one kind of meta-features by single lear ners. Considering that i) ensemble learners usually show better performance and ii) different kinds of meta-features characterize the classification problems in different viewpoints independently, and further the models constructed with different sets of meta-features will be complementary with each other and applicable for ensemble. This paper proposes an ensemble learning-based algorithm recommendation method. To evaluate the proposed recommendation method, extensive experiments with 13 well-known candidate classification algorithms and five different kinds of meta-features are conducted on 1090 benchmark classification problems. The results show the effectiveness of the proposed ensemble learning based recommendation method.
In this study, we address the challenges in developing a deep learning-based automatic patent citation recommendation system. Although deep learning-based recommendation systems have exhibited outstanding performance in various domains (such as movie s, products, and paper citations), their validity in patent citations has not been investigated, owing to the lack of a freely available high-quality dataset and relevant benchmark model. To solve these problems, we present a novel dataset called PatentNet that includes textual information and metadata for approximately 110,000 patents from the Google Big Query service. Further, we propose strong benchmark models considering the similarity of textual information and metadata (such as cooperative patent classification code). Compared with existing recommendation methods, the proposed benchmark method achieved a mean reciprocal rank of 0.2377 on the test set, whereas the existing state-of-the-art recommendation method achieved 0.2073.
176 - Dou Hu , Lingwei Wei , Wei Zhou 2021
Session-based recommendation aims to predict user the next action based on historical behaviors in an anonymous session. For better recommendations, it is vital to capture user preferences as well as their dynamics. Besides, user preferences evolve o ver time dynamically and each preference has its own evolving track. However, most previous works neglect the evolving trend of preferences and can be easily disturbed by the effect of preference drifting. In this paper, we propose a novel Preference Evolution Networks for session-based Recommendation (PEN4Rec) to model preference evolving process by a two-stage retrieval from historical contexts. Specifically, the first-stage process integrates relevant behaviors according to recent items. Then, the second-stage process models the preference evolving trajectory over time dynamically and infer rich preferences. The process can strengthen the effect of relevant sequential behaviors during the preference evolution and weaken the disturbance from preference drifting. Extensive experiments on three public datasets demonstrate the effectiveness and superiority of the proposed model.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا