ﻻ يوجد ملخص باللغة العربية
It is well-known that the convex and concave envelope of a multilinear polynomial over a box are polyhedral functions. Exponential-sized extended and projected formulations for these envelopes are also known. We consider the convexification question for multilinear polynomials that are symmetric with respect to permutations of variables. Such a permutation-invariant structure naturally implies a quadratic-sized extended formulation for the envelopes through the use of disjunctive programming. The optimization and separation problems are answered directly without using this extension. The problem symmetry allows the optimization and separation problems to be answered directly without using any extension. It also implies that permuting the coefficients of a core set of facets generates all the facets. We provide some necessary conditions and some sufficient conditions for a valid inequality to be a core facet. These conditions are applied to obtain envelopes for two classes: symmetric supermodular functions and multilinear monomials with reflection symmetry, thereby yielding alternate proofs to the literature. Furthermore, we use constructs from the reformulation-linearization-technique to completely characterize the set of points lying on each facet.
For a d-dimensional polyhedral complex P, the dimension of the space of piecewise polynomial functions (splines) on P of smoothness r and degree k is given, for k sufficiently large, by a polynomial f(P,r,k) of degree d. When d=2 and P is simplicial,
The construction of a simplicial complex given by polyhedral joins (introduced by Anton Ayzenberg), generalizes Bahri, Bendersky, Cohen and Gitlers $J$-construction and simplicial wedge construction. This article gives a cohomological decomposition o
The regularity theory for variational inequalities over polyhedral sets developed in a series of papers by Robinson, Ralph and Dontchev-Rockafellar in the 90s has long become classics of variational analysis. But in the available proofs of almost all
Polyhedral products were defined by Bahri, Bendersky, Cohen and Gitler, to be spaces obtained as unions of certain product spaces indexed by the simplices of an abstract simplicial complex. In this paper we give a very general homotopy theoretic cons
We present a deterministic algorithm which computes the multilinear factors of multivariate lacunary polynomials over number fields. Its complexity is polynomial in $ell^n$ where $ell$ is the lacunary size of the input polynomial and $n$ its number o