ﻻ يوجد ملخص باللغة العربية
In natural language processing (NLP) tasks, slow inference speed and huge footprints in GPU usage remain the bottleneck of applying pre-trained deep models in production. As a popular method for model compression, knowledge distillation transfers knowledge from one or multiple large (teacher) models to a small (student) model. When multiple teacher models are available in distillation, the state-of-the-art methods assign a fixed weight to a teacher model in the whole distillation. Furthermore, most of the existing methods allocate an equal weight to every teacher model. In this paper, we observe that, due to the complexity of training examples and the differences in student model capability, learning differentially from teacher models can lead to better performance of student models distilled. We systematically develop a reinforced method to dynamically assign weights to teacher models for different training instances and optimize the performance of student model. Our extensive experimental results on several NLP tasks clearly verify the feasibility and effectiveness of our approach.
Knowledge distillation~(KD) is an effective learning paradigm for improving the performance of lightweight student networks by utilizing additional supervision knowledge distilled from teacher networks. Most pioneering studies either learn from only
Named entity recognition (NER) is a fundamental component in many applications, such as Web Search and Voice Assistants. Although deep neural networks greatly improve the performance of NER, due to the requirement of large amounts of training data, d
Knowledge Distillation (KD) is an effective framework for compressing deep learning models, realized by a student-teacher paradigm requiring small student networks to mimic the soft target generated by well-trained teachers. However, the teachers are
Significant memory and computational requirements of large deep neural networks restrict their application on edge devices. Knowledge distillation (KD) is a prominent model compression technique for deep neural networks in which the knowledge of a tr
In recent years, Siamese network based trackers have significantly advanced the state-of-the-art in real-time tracking. However, state-of-the-art Siamese trackers suffer from high memory cost which restricts their applicability in mobile applications