ﻻ يوجد ملخص باللغة العربية
Disorder-free localization has recently emerged as a mechanism for ergodicity breaking in homogeneous lattice gauge theories. In this work we show that this mechanism can lead to unconventional states of quantum matter as the absence of thermalization lifts constraints imposed by equilibrium statistical physics. We study a Kitaev honeycomb model in a skew magnetic field subject to a quantum quench from a fully polarized initial product state and observe nonergodic dynamics as a consequence of disorder-free localization. We find that the system exhibits a subballistic power-law entanglement growth and quantum correlation spreading, which is otherwise typically associated with thermalizing systems. In the asymptotic steady state the Kitaev model develops volume-law entanglement and power-law decaying dimer quantum correlations even at a finite energy density. Our work sheds light onto the potential for disorder-free localized lattice gauge theories to realize quantum states in two dimensions with properties beyond what is possible in an equilibrium context.
Large-scale quantum devices provide insights beyond the reach of classical simulations. However, for a reliable and verifiable quantum simulation, the building blocks of the quantum device require exquisite benchmarking. This benchmarking of large sc
Strongly correlated phases of matter are often described in terms of straightforward electronic patterns. This has so far been the basis for studying the Fermi-Hubbard model realized with ultracold atoms. Here, we show that artificial intelligence (A
Non-unitary evolution can give rise to novel steady states classified by their entanglement properties. In this work, we aim to understand its interplay with long-range hopping that decays with $r^{-alpha}$ in free-fermion systems. We first study two
We investigate a spatial subsystem entropy extracted from the one-particle density matrix (OPDM) in one-dimensional disordered interacting fermions that host a many-body localized (MBL) phase. Deep in the putative MBL regime, this OPDM entropy exhibi
We study spin transport in a Hubbard chain with strong, random, on--site potential and with spin--dependent hopping integrals, $t_{sigma}$. For the the SU(2) symmetric case, $t_{uparrow} =t_{downarrow}$, such model exhibits only partial many-body loc