ﻻ يوجد ملخص باللغة العربية
In 1998 Friedlander and Iwaniec proved that there are infinitely many primes of the form $a^2+b^4$. To show this they defined the spin of Gaussian integers by the Jacobi symbol, and one of the key ingredients in the proof was to show that the spin becomes equidistributed along Gaussian primes. To generalize this we define the cubic spin of ideals of $mathbb{Z}[zeta_{12}]=mathbb{Z}[zeta_3,i]$ by using the cubic residue character on the Eisenstein integers $mathbb{Z}[zeta_3]$. Our main theorem says that the cubic spin is equidistributed along prime ideals of $mathbb{Z}[zeta_{12}]$. The proof of this follows closely along the lines of Friedlander and Iwaniec. The main new feature in our case is the infinite unit group, which means that we need to show that the definition of the cubic spin on the ring of integers lifts to a well-defined function on the ideals. We also explain how the cubic spin arises if we consider primes of the form $a^2+b^6$ on the Eisenstein integers.
Let F be the cubic field of discriminant -23 and O its ring of integers. Let Gamma be the arithmetic group GL_2 (O), and for any ideal n subset O let Gamma_0 (n) be the congruence subgroup of level n. In a previous paper, two of us (PG and DY) comput
Using geometric methods, we improve on the function field version of the Burgess bound, and show that, when restricted to certain special subspaces, the M{o}bius function over $mathbb F_q[T]$ can be mimicked by Dirichlet characters. Combining these,
Let K be a cubic number field. In this paper, we study the Ramanujan sums c_{J}(I), where I and J are integral ideals in O_{K}. The asymptotic behaviour of sums of c_{J}(I) over both I and J is investigated.
Let ${mathbb F}_q$ be the finite field with $q=p^k$ elements with $p$ being a prime and $k$ be a positive integer. For any $y, zinmathbb{F}_q$, let $N_s(z)$ and $T_s(y)$ denote the numbers of zeros of $x_1^{3}+cdots+x_s^3=z$ and $x_1^3+cdots+x_{s-1}^
We show that there is essentially a unique elliptic curve $E$ defined over a cubic Galois extension $K$ of $mathbb Q$ with a $K$-rational point of order 13 and such that $E$ is not defined over $mathbb Q$.