ﻻ يوجد ملخص باللغة العربية
The constituent elements of active matter in nature often communicate with their counterparts or the environment by chemical signaling which is central to many biological processes. Examples range from bacteria or sperm that bias their motion in response to an external chemical gradient, to collective cell migration in response to a self-generated gradient. Here, in a purely physicochemical system based on self-propelling oil droplets, we report a novel mechanism of dynamical arrest in active emulsions: swimmers are caged between each others trails of secreted chemicals. We explore this mechanism quantitatively both on the scale of individual agent-trail collisions as well as on the collective scale where the transition to caging happens as a result of autochemotactic interactions.
We investigate numerically, by a hybrid lattice Boltzmann method, the morphology and the dynamics of an emulsion made of a polar active gel, contractile or extensile, and an isotropic passive fluid. We focus on the case of a highly off-symmetric rati
We use computer simulations to study the morphology and rheological properties of a bidimensional emulsion resulting from a mixture of a passive isotropic fluid and an active contractile polar gel, in the presence of a surfactant that favours the emu
In a system of colloidal inclusions suspended in a thermalized bath of smaller particles, the bath engenders an attractive force between the inclusions, arising mainly from entropic origins, known as the depletion force. In the case of active bath pa
In the presence of a chemically active particle, a nearby chemically inert particle can respond to a concentration gradient and move by diffusiophoresis. The nature of the motion is studied for two cases: first, a fixed reactive sphere and a moving i
We combine numerical and analytical methods to study two dimensional active crystals formed by permanently linked swimmers and with two distinct alignment interactions. The system admits a stationary phase with quasi long range translational order, a