ﻻ يوجد ملخص باللغة العربية
The spatial collection efficiency portrays the driving forces and loss mechanisms in photovoltaic and photoelectrochemical devices. It is defined as the fraction of photogenerated charge carriers created at a specific point within the device that contribute to the photocurrent. In stratified planar structures, the spatial collection efficiency can be extracted out of photocurrent action spectra measurements empirically, with few a priori assumptions. Although this method was applied to photovoltaic cells made of well-understood materials, it has never been used to study unconventional materials such as metal-oxide semiconductors that are often employed in photoelectrochemical cells. This perspective shows the opportunities that this method has to offer for investigating new materials and devices with unknown properties. The relative simplicity of the method, and its applicability to operando performance characterization, makes it an important tool for analysis and design of new photovoltaic and photoelectrochemical materials and devices.
Low noise CCDs fully-depleted up to 675 micrometers have been identified as a unique tool for Dark Matter searches and low energy neutrino physics. The charge collection efficiency (CCE) for these detectors is a critical parameter for the performance
We present a multijunction detailed balance model that includes the effects of luminescent coupling, light trapping and nonradiative recombination, suitable for treatment of multijunction solar cells and photonic power converters -- photovoltaic devi
Infrared absorption spectra of SrTiO$_3$ have been measured under above-band-gap photoexcitations to study the properties of photogenerated carriers, which should play important roles in previously reported photoinduced phenomena in SrTiO$_3$. A broa
At the interface between complex insulating oxides, novel phases with interesting properties may occur, such as the metallic state reported in the LaAlO3/SrTiO3 system. While this state has been predicted and reported to be confined at the interface,
The efficiency of solution-processed colloidal quantum dot (QD) based solar cells is limited by poor charge transport in the active layer of the device, which originates from multiple trapping sites provided by QD surface defects. We apply a recently