ﻻ يوجد ملخص باللغة العربية
The photoelectrochemical behavior of a planar 1 cm2 thick Ti-doped hematite film deposited on F:SnO2 coated glass was studied with both front and back illumination. Despite low quantum efficiency, photocurrent was observed upon back illumination with low wavelengths, indicating that some photogenerated holes are able to traverse at least 700 nm across the hematite film and effectively oxidize water. This cannot be accounted for using the commonly accepted hole collection length of hematite based on fitting to the Gartner model. Furthermore, under back illumination, 450 nm excitation resulted in increased photocurrent as compared to 530 nm excitation despite most of the light being absorbed further away from the surface. These results demonstrate that the photocurrent is strongly dependent on the optical excitation wavelength, and related to both delocalized holes with long lifetime and localized excitations rather than only being dependent on the proximity of the absorption to the surface.
Photoelectrochemical impedance spectroscopy (PEIS) is a useful tool for the characterization of photoelectrodes for solar water splitting. However, the analysis of PEIS spectra often involves a priori assumptions that might bias the results. This wor
Transparent Fe1-xNixOOH overlayers (~2 nm thick) were deposited photoelectrochemically on (001) oriented heteroepitaxial Sn- and Zn-doped hematite (Fe2O3) thin film photoanodes. In both cases, the water photo-oxidation performance was improved by the
Optimising the photoelectrochemical performance of hematite photoanodes for solar water splitting requires better understanding of the relationships between dopant distribution, structural defects and photoelectrochemical properties. Here, we use com
In recent years, hematite potential as a photoanode material for solar hydrogen production has ignited a renewed interest in its physical and interfacial properties, which continues to be an active field of research. Research on hematite photoanodes
The oxygen evolution reaction (OER) at the surface of semiconductor photoanodes involves photo-generated holes that oxidize water. A certain fraction of the holes that reach the surface recombine with electrons from the conduction band, giving rise t