ﻻ يوجد ملخص باللغة العربية
The neutron-rich $^{28,29}$F isotopes have been recently studied via knockout and interaction cross-section measurements. The $2n$ halo in $^{29}$F has been linked to the occupancy of $pf$ intruder configurations. We investigate bound and continuum states in $^{29}$F, focusing on the $E1$ response of low-lying excitations and the effect of dipole couplings on nuclear reactions. $^{29}text{F}$ ($^{27}text{F}+n+n$) wave functions are built within the hyperspherical harmonics formalism, and reaction cross sections are calculated using the Glauber theory. Continuum states and $B(E1)$ transition probabilities are described in a pseudostate approach using the analytical THO basis. The corresponding structure form factors are used in CDCC calculations to describe low-energy scattering. Parity inversion in $^{28}$F leads to a $^{29}$F ground state characterized by 57.5% of $(p_{3/2})^2$ intruder components, a strong dineutron configuration, and an increase of the matter radius with respect to the core radius of $Delta R=0.20$ fm. Glauber-model calculations for a carbon target at 240 MeV/nucleon provide a total reaction cross section of 1370 mb, in agreement with recent data. The model produces also a barely bound excited state corresponding to a quadrupole excitation. $B(E1)$ calculations into the continuum yield a total strength of 1.59 e$^2$fm$^2$ up to 6 MeV, and the $E1$ distribution exhibits a resonance at $approx$ 0.85 MeV. Results using a standard shell-model order for $^{28}$F lead to a considerable reduction of the $B(E1)$ distribution. The four-body CDCC calculations for $^{29}text{F}+^{120}text{Sn}$ around the Coulomb barrier are dominated by dipole couplings, which totally cancel the Fresnel peak in the elastic cross section. These results are consistent with a two-neutron halo and may guide future experimental campaigns.
Lying at the lower edge of the `island of inversion, neutron-rich Fluorine isotopes ($^{29-31}$F) provide a curious case to study the configuration mixing in this part of the nuclear landscape. Recent studies have suggested that a prospective two-neu
We report the measurement of reaction cross sections ($sigma_R^{rm ex}$) of $^{27,29}$F with a carbon target at RIKEN. The unexpectedly large $sigma_R^{rm ex}$ and derived matter radius identify $^{29}$F as the heaviest two-neutron Borromean halo to
Background$colon$ The $^{29}$F system is located at the lower-N boundary of the island of inversion and is an exotic, weakly bound system. Little is known about this system beyond its two-neutron separation energy ($S_{2n}$) with large uncertainties.
Isospin properties of dipole excitations in 74 Ge are investigated using the ({alpha},{alpha}{gamma}) reaction and compared to ({gamma},{gamma}) data. The results indicate that the dipole excitations in the energy region of 6 to 9 MeV adhere to the s
The electric dipole strength in 120Sn has been extracted from proton inelastic scattering experiments at E_p = 295 MeV and at forward angles including 0 degree. Below neutron threshoild it differs from the results of a 120Sn(gamma,gamma) experiment a