ﻻ يوجد ملخص باللغة العربية
We discuss in depth the application of the classical concepts for interpreting the quantal results from the triaxial rotor core without and with odd-particle. The corresponding limitations caused by the discreteness and finiteness of the angular momentum Hilbert space and the extraction of the relevant features from the complex wave function and distributions of various angular momentum components are discussed in detail. New methods based on spin coherent states and spin squeezed states are introduced. It is demonstrated that the spin coherent state map is a powerful tool to visualize the angular momentum geometry of rotating nuclei. The topological nature of the concepts of transverse and longitudinal wobbling is clarified and the transitional axis-flipregime is analysed for the first time.
The triaxial dynamics of the quadrupole-deformed rotor model of both the rigid and the irrotational type have been investigated in detail. The results indicate that level patterns and E2 transitional characters of the two types of the model can be ma
The triaxial nature of low-lying rotational bands of $^{166}$Er is presented from the viewpoint of the Bohr Hamiltonian and from that of many-fermion calculations by the Monte Carlo shell model and the constrained Hartree-Fock method with projections
A reflection-asymmetric triaxial particle rotor model (RAT-PRM) with a quasi-proton and a quasi-neutron coupled with a reflection-asymmetric triaxial rotor is developed and applied to investigate the multiple chiral doublet (M$chi$D) bands candidates
We expand the triaxial projected shell model basis to include triaxially-deformed multi-quasiparticle states. This allows us to study the yrast and gamma-vibrational bands up to high spins for both gamma-soft and well-deformed nuclei. As the first ap
Background: Recent accumulation of experimental data is revealing the nuclear deformation in vicinity of 42Si. This requests systematic theoretical studies to clarify more specific aspects of nuclear deformation and its causes. Purpose: The purpose o