ﻻ يوجد ملخص باللغة العربية
In this paper, by means of the classical Lagrange inversion formula, we establish a general nonlinear inverse relations which is a partial solution to the problem proposed in the paper [J. Wang, Nonlinear inverse relations for the Bell polynomials via the Lagrange inversion formula, J. Integer Seq., Vol. 22 (2019), Article 19.3.8. (https://cs.uwaterloo.ca/journals/JIS/VOL22/Wang/wang53.pdf). As applications of this inverse relation, we not only find a short proof of another nonlinear inverse relation due to Birmajer et al., but also set up a few convolution identities concerning the Mina polynomials.
In this note, by the umbra calculus method, the Sun and Zagiers congruences involving the Bell numbers and the derangement numbers are generalized to the polynomial cases. Some special congruences are also provided.
We derive self-reciprocity properties for a number of polyomino generating functions, including several families of column-convex polygons, three-choice polygons and staircase polygons with a staircase hole. In so doing, we establish a connection bet
We prove a generalization of a conjecture of Dokos, Dwyer, Johnson, Sagan, and Selsor giving a recursion for the inversion polynomial of 321-avoiding permutations. We also answer a question they posed about finding a recursive formulas for the major
A {em k-generalized Dyck path} of length $n$ is a lattice path from $(0,0)$ to $(n,0)$ in the plane integer lattice $mathbb{Z}timesmathbb{Z}$ consisting of horizontal-steps $(k, 0)$ for a given integer $kgeq 0$, up-steps $(1,1)$, and down-steps $(1,-
In this note we characterize when non-classical polynomials are necessary in the inverse theorem for the Gowers $U^k$-norm. We give a brief deduction of the fact that a bounded function on $mathbb F_p^n$ with large $U^k$-norm must correlate with a cl