ﻻ يوجد ملخص باللغة العربية
The study of strategic or adversarial manipulation of testing data to fool a classifier has attracted much recent attention. Most previous works have focused on two extreme situations where any testing data point either is completely adversarial or always equally prefers the positive label. In this paper, we generalize both of these through a unified framework for strategic classification, and introduce the notion of strategic VC-dimension (SVC) to capture the PAC-learnability in our general strategic setup. SVC provably generalizes the recent concept of adversarial VC-dimension (AVC) introduced by Cullina et al. arXiv:1806.01471. We instantiate our framework for the fundamental strategic linear classification problem. We fully characterize: (1) the statistical learnability of linear classifiers by pinning down its SVC; (2) its computational tractability by pinning down the complexity of the empirical risk minimization problem. Interestingly, the SVC of linear classifiers is always upper bounded by its standard VC-dimension. This characterization also strictly generalizes the AVC bound for linear classifiers in arXiv:1806.01471.
Consequential decision-making typically incentivizes individuals to behave strategically, tailoring their behavior to the specifics of the decision rule. A long line of work has therefore sought to counteract strategic behavior by designing more cons
By leveraging experience from previous tasks, meta-learning algorithms can achieve effective fast adaptation ability when encountering new tasks. However it is unclear how the generalization property applies to new tasks. Probably approximately corre
The theory of reinforcement learning has focused on two fundamental problems: achieving low regret, and identifying $epsilon$-optimal policies. While a simple reduction allows one to apply a low-regret algorithm to obtain an $epsilon$-optimal policy
We study the power of learning via mini-batch stochastic gradient descent (SGD) on the population loss, and batch Gradient Descent (GD) on the empirical loss, of a differentiable model or neural network, and ask what learning problems can be learnt u
Strategic classification regards the problem of learning in settings where users can strategically modify their features to improve outcomes. This setting applies broadly and has received much recent attention. But despite its practical significance,