ترغب بنشر مسار تعليمي؟ اضغط هنا

Properties and dynamics of meron topological spin textures in the two-dimensional magnet CrCl3

327   0   0.0 ( 0 )
 نشر من قبل Elton J. G. Santos
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Merons are nontrivial topological spin textures highly relevant for many phenomena in solid state physics. Despite their importance, direct observation of such vortex quasiparticles is scarce and has been limited to a few complex materials. Here we show the emergence of merons and antimerons in recently discovered two-dimensional (2D) CrCl3 at zero magnetic field. We show their entire evolution from pair creation, their diffusion over metastable domain walls, and collision leading to large magnetic monodomains. Both quasiparticles are stabilized spontaneously during cooling at regions where in-plane magnetic frustration takes place. Their dynamics is determined by the interplay between the strong in-plane dipolar interactions and the weak out-of-plane magnetic anisotropy stabilising a vortex core within a radius of 8-10 nm. Our results push the boundary to what is currently known about non-trivial spin structures in 2D magnets and open exciting opportunities to control magnetic domains via topological quasiparticles.



قيم البحث

اقرأ أيضاً

Spin polarized scanning tunneling microscopy is used to directly image topological magnetic textures in thin films of MnGe, and to correlate the magnetism with structure probed at the atomic-scale. Our images indicate helical stripe domains, each cha racterized by a single wavevector Q, and their associated helimagnetic domain walls, in contrast to the 3Q magnetic state seen in the bulk. Combining our surface measurements with micromagnetic modeling, we deduce the three-dimensional orientation of the helical wavevectors and gain detailed understanding of the structure of individual domain walls and their intersections. We find that three helical domains meet in two distinct ways to produce either a target-like or a pi-like topological spin texture, and correlate these with local strain on the surface. We further show that the target-like texture can be reversibly manipulated through either current/voltage pulsing or applied magnetic field, a promising step toward future applications.
We present muon spin lattice relaxation measurements in the V15 spin 1/2 molecular nano-magnet. We find that the relaxation rate in low magnetic fields (<5 kG) is temperature independent below ~10 K, implying that the molecular spin is dynamically fl uctuating down to 12 mK. These measurements show that the fluctuation time increases as the temperature is decreased and saturates at a value of ~6 nsec at low temperatures. The fluctuations are attributed to V15 molecular spin dynamics perpendicular to the applied magnetic field direction, induced by coupling between the molecular spin and nuclear spin bath in the system.
Skyrmions are topologically protected, two-dimensional, localized hedgehogs and whorls of spin. Originally invented as a concept in field theory for nuclear interactions, skyrmions are central to a wide range of phenomena in condensed matter. Their r ealization at room temperature (RT) in magnetic multilayers has generated considerable interest, fueled by technological prospects and the access granted to fundamental questions. The interaction of skyrmions with charge carriers gives rise to exotic electrodynamics, such as the topological Hall effect (THE), the Hall response to an emergent magnetic field, a manifestation of the skyrmion Berry-phase. The proposal that THE can be used to detect skyrmions needs to be tested quantitatively. For that it is imperative to develop comprehensive understanding of skyrmions and other chiral textures, and their electrical fingerprint. Here, using Hall transport and magnetic imaging, we track the evolution of magnetic textures and their THE signature in a technologically viable multilayer film as a function of temperature ($T$) and out-of-plane applied magnetic field ($H$). We show that topological Hall resistivity ($rho_mathrm{TH}$) scales with the density of isolated skyrmions ($n_mathrm{sk}$) over a wide range of $T$, confirming the impact of the skyrmion Berry-phase on electronic transport. We find that at higher $n_mathrm{sk}$ skyrmions cluster into worms which carry considerable topological charge, unlike topologically-trivial spin spirals. While we establish a qualitative agreement between $rho_mathrm{TH}(H,T)$ and areal density of topological charge $n_mathrm{T}(H,T)$, our detailed quantitative analysis shows a much larger $rho_mathrm{TH}$ than the prevailing theory predicts for observed $n_mathrm{T}$.
282 - M. A. Cazalilla , H. Ochoa , 2013
We propose to engineer time-reversal-invariant topological insulators in two-dimensional (2D) crystals of transition metal dichalcogenides (TMDCs). We note that, at low doping, semiconducting TMDCs under shear strain will develop spin-polarized Landa u levels residing in different valleys. We argue that gaps between Landau levels in the range of $10-100$ Kelvin are within experimental reach. In addition, we point out that a superlattice arising from a Moire pattern can lead to topologically non-trivial subbands. As a result, the edge transport becomes quantized, which can be probed in multi-terminal devices made using strained 2D crystals and/or heterostructures. The strong $d$ character of valence and conduction bands may also allow for the investigation of the effects of electron correlations on the topological phases.
Controlling magnetism in low dimensional materials is essential for designing devices that have feature sizes comparable to several critical length scales that exploit functional spin textures, allowing the realization of low-power spintronic and mag neto-electric hardware. [1] Unlike conventional covalently-bonded bulk materials, van der Waals (vdW)-bonded layered magnets [2-4] offer exceptional degrees of freedom for engineering spin textures. [5] However, their structural instability has hindered microscopic studies and manipulations. Here, we demonstrate nanoscale structural control in the layered magnet CrSBr creating novel spin textures down to the atomic scale. We show that it is possible to drive a local structural phase transformation using an electron beam that locally exchanges the bondings in different directions, effectively creating regions that have vertical vdW layers embedded within the horizontally vdW bonded exfoliated flakes. We calculate that the newly formed 2D structure is ferromagnetically ordered in-plane with an energy gap in the visible spectrum, and weak antiferromagnetism between the planes. Our study lays the groundwork for designing and studying novel spin textures and related quantum magnetic phases down to single-atom sensitivity, potentially to create on-demand spin Hamiltonians probing fundamental concepts in physics, [6-10] and for realizing high-performance spintronic, magneto-electric and topological devices with nanometer feature sizes. [11,12]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا