ﻻ يوجد ملخص باللغة العربية
Visual clutter affects our ability to see: objects that would be identifiable on their own, may become unrecognizable when presented close together (crowding) -- but the psychophysical characteristics of crowding have resisted simplification. Image properties initially thought to produce crowding have paradoxically yielded unexpected results, e.g., adding flanking objects can ameliorate crowding (Manassi, Sayim et al., 2012; Herzog, Sayim et al., 2015; Pachai, Doerig et al., 2016). The resulting theory revisions have been sufficiently complex and specialized as to make it difficult to discern what principles may underlie the observed phenomena. A generalized formulation of simple visual contrast energy is presented, arising from straightforward analyses of center and surround neurons in the early visual stream. Extant contrast measures, such as RMS contrast, are easily shown to fall out as reduced special cases. The new generalized contrast energy metric surprisingly predicts the principal findings of a broad range of crowding studies. These early crowding phenomena may thus be said to arise predominantly from contrast, or are, at least, severely confounded by contrast effects. (These findings may be distinct from accounts of other, likely downstream, configural or semantic instances of crowding, suggesting at least two separate forms of crowding that may resist unification.) The new fundamental contrast energy formulation provides a candidate explanatory framework that addresses multiple psychophysical phenomena beyond crowding.
Feedforward Convolutional Neural Networks (ffCNNs) have become state-of-the-art models both in computer vision and neuroscience. However, human-like performance of ffCNNs does not necessarily imply human-like computations. Previous studies have sugge
Crowding is most likely an important factor in the deterioration of strategy performance, the increase of trading costs and the development of systemic risk. We study the imprints of emph{crowding} on both anonymous market data and a large database o
During development, the mammalian brain differentiates into specialized regions with distinct functional abilities. While many factors contribute to functional specialization, we explore the effect of neuronal density on the development of neuronal i
Neurons in the main center of convergence in the auditory midbrain, the central nucleus of the inferior colliculus (ICC) have been shown to display either linear significant receptive fields, or both, linear and nonlinear significant receptive fields
The physical and chemical environment inside cells is of fundamental importance to all life but has traditionally been difficult to determine on a subcellular basis. Here we combine cutting-edge genomically integrated FRET biosensing to readout local