ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence results for some piecewise linear solvers

63   0   0.0 ( 0 )
 نشر من قبل Manuel Radons
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $A$ be a real $ntimes n$ matrix and $z,bin mathbb R^n$. The piecewise linear equation system $z-Avert zvert = b$ is called an textit{absolute value equation}. We consider two solvers for this problem, one direct, one semi-iterative, and extend their previously known ranges of convergence.



قيم البحث

اقرأ أيضاً

128 - Adrian Sandu 2020
This paper studies fixed-step convergence of implicit-explicit general linear methods. We focus on a subclass of schemes that is internally consistent, has high stage order, and favorable stability properties. Classical, index-1 differential algebrai c equation, and singular perturbation convergence analyses results are given. For all these problems IMEX GLMs from the class of interest converge with the full theoretical orders under general assumptions. The convergence results require the time steps to be sufficiently small, with upper bounds that are independent on the stiffness of the problem.
Finite element methods for symmetric linear hyperbolic systems using unstructured advancing fronts (satisfying a causality condition) are considered in this work. Convergence results and error bounds are obtained for mapped tent pitching schemes made with standard discontinuous Galerkin discretizations for spatial approximation on mapped tents. Techniques to study semidiscretization on mapped tents, design fully discrete schemes, prove local error bounds, prove stability on spacetime fronts, and bound error propagated through unstructured layers are developed.
The randomized sparse Kaczmarz method was recently proposed to recover sparse solutions of linear systems. In this work, we introduce a greedy variant of the randomized sparse Kaczmarz method by employing the sampling Kaczmarz-Motzkin method, and pro ve its linear convergence in expectation with respect to the Bregman distance in the noiseless and noisy cases. This greedy variant can be viewed as a unification of the sampling Kaczmarz-Motzkin method and the randomized sparse Kaczmarz method, and hence inherits the merits of these two methods. Numerically, we report a couple of experimental results to demonstrate its superiority
We prove non asymptotic linear convergence rates for the constrained Anderson acceleration extrapolation scheme. These guarantees come from new upper bounds on the constrained Chebyshev problem, which consists in minimizing the maximum absolute value of a polynomial on a bounded real interval with $l_1$ constraints on its coefficients vector. Constrained Anderson Acceleration has a numerical cost comparable to that of the original scheme.
The linear equations that arise in interior methods for constrained optimization are sparse symmetric indefinite and become extremely ill-conditioned as the interior method converges. These linear systems present a challenge for existing solver frame works based on sparse LU or LDL^T decompositions. We benchmark five well known direct linear solver packages using matrices extracted from power grid optimization problems. The achieved solution accuracy varies greatly among the packages. None of the tested packages delivers significant GPU acceleration for our test cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا