ترغب بنشر مسار تعليمي؟ اضغط هنا

A Benchmark Dataset for Understandable Medical Language Translation

90   0   0.0 ( 0 )
 نشر من قبل Junyu Luo
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we introduce MedLane -- a new human-annotated Medical Language translation dataset, to align professional medical sentences with layperson-understandable expressions. The dataset contains 12,801 training samples, 1,015 validation samples, and 1,016 testing samples. We then evaluate one naive and six deep learning-based approaches on the MedLane dataset, including directly copying, a statistical machine translation approach Moses, four neural machine translation approaches (i.e., the proposed PMBERT-MT model, Seq2Seq and its two variants), and a modified text summarization model PointerNet. To compare the results, we utilize eleven metrics, including three new measures specifically designed for this task. Finally, we discuss the limitations of MedLane and baselines, and point out possible research directions for this task.



قيم البحث

اقرأ أيضاً

Previous domain adaptation research usually neglect the diversity in translation within a same domain, which is a core problem for adapting a general neural machine translation (NMT) model into a specific domain in real-world scenarios. One represent ative of such challenging scenarios is to deploy a translation system for a conference with a specific topic, e.g. computer networks or natural language processing, where there is usually extremely less resources due to the limited time schedule. To motivate a wide investigation in such settings, we present a real-world fine-grained domain adaptation task in machine translation (FDMT). The FDMT dataset (Zh-En) consists of four sub-domains of information technology: autonomous vehicles, AI education, real-time networks and smart phone. To be closer to reality, FDMT does not employ any in-domain bilingual training data. Instead, each sub-domain is equipped with monolingual data, bilingual dictionary and knowledge base, to encourage in-depth exploration of these available resources. Corresponding development set and test set are provided for evaluation purpose. We make quantitative experiments and deep analyses in this new setting, which benchmarks the fine-grained domain adaptation task and reveals several challenging problems that need to be addressed.
Recent studies show that crowd-sourced Natural Language Inference (NLI) datasets may suffer from significant biases like annotation artifacts. Models utilizing these superficial clues gain mirage advantages on the in-domain testing set, which makes t he evaluation results over-estimated. The lack of trustworthy evaluation settings and benchmarks stalls the progress of NLI research. In this paper, we propose to assess a models trustworthy generalization performance with cross-datasets evaluation. We present a new unified cross-datasets benchmark with 14 NLI datasets, and re-evaluate 9 widely-used neural network-based NLI models as well as 5 recently proposed debiasing methods for annotation artifacts. Our proposed evaluation scheme and experimental baselines could provide a basis to inspire future reliable NLI research.
582 - Liang Xu , Hai Hu , Xuanwei Zhang 2020
The advent of natural language understanding (NLU) benchmarks for English, such as GLUE and SuperGLUE allows new NLU models to be evaluated across a diverse set of tasks. These comprehensive benchmarks have facilitated a broad range of research and a pplications in natural language processing (NLP). The problem, however, is that most such benchmarks are limited to English, which has made it difficult to replicate many of the successes in English NLU for other languages. To help remedy this issue, we introduce the first large-scale Chinese Language Understanding Evaluation (CLUE) benchmark. CLUE is an open-ended, community-driven project that brings together 9 tasks spanning several well-established single-sentence/sentence-pair classification tasks, as well as machine reading comprehension, all on original Chinese text. To establish results on these tasks, we report scores using an exhaustive set of current state-of-the-art pre-trained Chinese models (9 in total). We also introduce a number of supplementary datasets and additional tools to help facilitate further progress on Chinese NLU. Our benchmark is released at https://www.CLUEbenchmarks.com
We present a Chinese judicial reading comprehension (CJRC) dataset which contains approximately 10K documents and almost 50K questions with answers. The documents come from judgment documents and the questions are annotated by law experts. The CJRC d ataset can help researchers extract elements by reading comprehension technology. Element extraction is an important task in the legal field. However, it is difficult to predefine the element types completely due to the diversity of document types and causes of action. By contrast, machine reading comprehension technology can quickly extract elements by answering various questions from the long document. We build two strong baseline models based on BERT and BiDAF. The experimental results show that there is enough space for improvement compared to human annotators.
Building quality machine learning models for natural language understanding (NLU) tasks relies heavily on labeled data. Weak supervision has been shown to provide valuable supervision when large amount of labeled data is unavailable or expensive to o btain. Existing works studying weak supervision for NLU either mostly focus on a specific task or simulate weak supervision signals from ground-truth labels. To date a benchmark for NLU with real world weak supervision signals for a collection of NLU tasks is still not available. In this paper, we propose such a benchmark, named WALNUT, to advocate and facilitate research on weak supervision for NLU. WALNUT consists of NLU tasks with different types, including both document-level prediction tasks and token-level prediction tasks and for each task contains weak labels generated by multiple real-world weak sources. We conduct baseline evaluations on the benchmark to systematically test the value of weak supervision for NLU tasks, with various weak supervision methods and model architectures. We demonstrate the benefits of weak supervision for low-resource NLU tasks and expect WALNUT to stimulate further research on methodologies to best leverage weak supervision. The benchmark and code for baselines will be publicly available at aka.ms/walnut_benchmark.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا