ﻻ يوجد ملخص باللغة العربية
Given a light source, a spherical reflector, and an observer, where on the surface of the sphere will the light be directly reflected to the observer, i.e. where is the the specular point? This is known as the Alhazen-Ptolemy problem, and finding this specular point for spherical reflectors is useful in applications ranging from computer rendering to atmospheric modeling to GPS communications. Existing solutions rely upon finding the roots of a quartic equation and evaluating numerically which root provides the real specular point. We offer a formulation, and two solutions thereof, for which the correct root is predeterminable, thereby allowing the construction of the fully analytical solutions we present. Being faster to compute, our solutions should prove useful in cases which require repeated calculation of the specular point, such as Monte-Carlo radiative transfer, including reflections off of Titans hydrocarbon seas.
Seismology is the main tool for inferring the deep interior structures of Earth and potentially also of other planetary bodies in the solar system. Terrestrial seismology is influenced by the presence of the ocean-generated microseismic signal, which
The discontinuous Galerkin finite element method (DG-FEM) is successfully applied to treat a broad variety of transport problems numerically. In this work, we use the full capacity of the DG-FEM to solve the radiative transfer equation in spherical s
Occurring in protoplanetary discs composed of dust and gas, streaming instabilities are a favoured mechanism to drive the formation of planetesimals. The Polydispserse Streaming Instability is a generalisation of the Streaming Instability to a contin
This and companion papers by Harrington et al. and Blecic et al. present the Bayesian Atmospheric Radiative Transfer ({BART}) code, an open-source, open-development package to characterize extrasolar-planet atmospheres. {BART} combines a thermochemic
An accurate and efficient method dealing with the few-body dynamics is important for simulating collisional N-body systems like star clusters and to follow the formation and evolution of compact binaries. We describe such a method which combines the