ﻻ يوجد ملخص باللغة العربية
The quantum Fisher information matrix is a central object in multiparameter quantum estimation theory. It is usually challenging to obtain analytical expressions for it because most calculation methods rely on the diagonalization of the density matrix. In this paper, we derive general expressions for the quantum Fisher information matrix which bypass matrix diagonalization and do not require the expansion of operators on an orthonormal set of states. Additionally, we can tackle density matrices of arbitrary rank. The methods presented here simplify analytical calculations considerably when, for example, the density matrix is more naturally expressed in terms of non-orthogonal states, such as coherent states. Our derivation relies on two matrix inverses which, in principle, can be evaluated analytically even when the density matrix is not diagonalizable in closed form. We demonstrate the power of our approach by deriving novel results in the timely field of discrete quantum imaging: the estimation of positions and intensities of incoherent point sources. We find analytical expressions for the full estimation problem of two point sources with different intensities, and for specific examples with three point sources. We expect that our method will become standard in quantum metrology.
In recent proposals for achieving optical super-resolution, variants of the Quantum Fisher Information (QFI) quantify the attainable precision. We find that claims about a strong enhancement of the resolution resulting from coherence effects are ques
The Quantum Fisher Information (QFI) plays a crucial role in quantum information theory and in many practical applications such as quantum metrology. However, computing the QFI is generally a computationally demanding task. In this work we analyze a
In estimating an unknown parameter of a quantum state the quantum Fisher information (QFI) is a pivotal quantity, which depends on the state and its derivate with respect to the unknown parameter. We prove the continuity property for the QFI in the s
We show that both the classical as well as the quantum definitions of the Fisher information faithfully identify resourceful quantum states in general quantum resource theories, in the sense that they can always distinguish between states with and wi
Any quantum process is represented by a sequence of quantum channels. We consider ergodic processes, obtained by sampling channel valued random variables along the trajectories of an ergodic dynamical system. Examples of such processes include the ef