ترغب بنشر مسار تعليمي؟ اضغط هنا

Gluon parton densities in soft-wall AdS/QCD

188   0   0.0 ( 0 )
 نشر من قبل Valery Lyubovitskij
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the gluon parton densities [parton distribution functions (PDFs), transverse momentum distributions (TMDs), generalized parton distributions (GPDs)] and form factors in soft-wall AdS/QCD. We show that the power behavior of gluon parton distributions and form factors at large values of the light-cone variable and large values of square momentum is consistent with quark counting rules. We also show that the transverse momentum distributions derived in our approach obey the model-independent Mulders-Rodrigues inequalities without referring to specific model parameters. All gluon parton distributions are defined in terms of the unpolarized and polarized gluon PDFs and profile functions. The latter are related to gluon PDFs via differential equations.



قيم البحث

اقرأ أيضاً

148 - Majid Dehghani 2015
Holographic soft-wall model is successful in the phenomenology of hadrons. Here with the use of generalized parton distributions (GPDs) obtained from AdS/QCD, perturbative effects are entered into the formalism. Perturbations are incorporated in the formalism through the evolution of GPDs according to the DGLAP like equations. Evolved proton GPDs are compared with a phenomenological model to show that we can get good improvements of the holographic model. It seems that combining the holographic soft-wall model with perturbative effects to some extent, gives the correct physics of GPDs.
We present a study of electroexcitation of nucleon resonances with higher spins, in a soft-wall AdS/QCD model, comparing our results with existing data from the CLAS Collaboration at JLab, from MAMI, and other experiments.
We explicitly demonstrate how to correctly define the hadronic parton distributions (PDFs, TMDs, and GPDs) in the soft-wall AdS/QCD approach, based on the use of a quadratic dilaton field, providing confinement and spontaneous breaking of conformal a nd chiral symmetries. The power behavior of parton distributions at large values of the light-cone variable is consistent with quark counting rules and Drell-Yan-West duality. All parton distributions are defined in terms of profile functions, which depend on the light-cone coordinate and are fixed from PDFs and electromagnetic form factors.
The formalism for modeling multiple fermion generations in a warped extra dimension with a soft-wall is presented. A bulk Higgs condensate is responsible for generating mass for the zero-mode fermions but leads to additional complexity from large mix ing between different flavors. We extend existing single-generation analyses by considering new special cases in which analytical solutions can be derived and discuss flavor constraints. The general three-generation case is then treated using a simple numerical routine. Assuming anarchic 5D parameters we find a fermion mass spectrum resembling the standard model quarks and leptons with highly degenerate couplings to Kaluza-Klein gauge bosons. This confirms that the soft-wall model has similar attractive features as that found in hard-wall models, providing a framework to generalize existing phenomenological analyses.
168 - F. Hautmann , H. Jung , A. Lelek 2017
We study parton-branching solutions of QCD evolution equations and present a method to construct both collinear and transverse momentum dependent (TMD) parton densities from this approach. We work with next-to-leading-order (NLO) accuracy in the stro ng coupling. Using the unitarity picture in terms of resolvable and non-resolvable branchings, we analyze the role of the soft-gluon resolution scale in the evolution equations. For longitudinal momentum distributions, we find agreement of our numerical calculations with existing evolution programs at the level of better than 1 percent over a range of five orders of magnitude both in evolution scale and in longitudinal momentum fraction. We make predictions for the evolution of transverse momentum distributions. We perform fits to the high-precision deep inelastic scattering (DIS) structure function measurements, and we present a set of NLO TMD distributions based on the parton branching approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا