ﻻ يوجد ملخص باللغة العربية
We present a method for reconstructing triangle meshes from point clouds. Existing learning-based methods for mesh reconstruction mostly generate triangles individually, making it hard to create manifold meshes. We leverage the properties of 2D Delaunay triangulations to construct a mesh from manifold surface elements. Our method first estimates local geodesic neighborhoods around each point. We then perform a 2D projection of these neighborhoods using a learned logarithmic map. A Delaunay triangulation in this 2D domain is guaranteed to produce a manifold patch, which we call a Delaunay surface element. We synchronize the local 2D projections of neighboring elements to maximize the manifoldness of the reconstructed mesh. Our results show that we achieve better overall manifoldness of our reconstructed meshes than current methods to reconstruct meshes with arbitrary topology. Our code, data and pretrained models can be found online: https://github.com/mrakotosaon/dse-meshing
In this paper, a novel learning-based network, named DeepDT, is proposed to reconstruct the surface from Delaunay triangulation of point cloud. DeepDT learns to predict inside/outside labels of Delaunay tetrahedrons directly from a point cloud and co
Triangulated meshes have become ubiquitous discrete-surface representations. In this paper we address the problem of how to maintain the manifold properties of a surface while it undergoes strong deformations that may cause topological changes. We in
In this paper, we address the problem of 3D object mesh reconstruction from RGB videos. Our approach combines the best of multi-view geometric and data-driven methods for 3D reconstruction by optimizing object meshes for multi-view photometric consis
The reconstruction of a discrete surface from a point cloud is a fundamental geometry processing problem that has been studied for decades, with many methods developed. We propose the use of a deep neural network as a geometric prior for surface reco
In this work we address the challenging problem of multiview 3D surface reconstruction. We introduce a neural network architecture that simultaneously learns the unknown geometry, camera parameters, and a neural renderer that approximates the light r