ﻻ يوجد ملخص باللغة العربية
An unsolved challenge in the development of antigen specific immunotherapies is determining the optimal antigens to target. Comprehension of antigen-MHC binding is paramount towards achieving this goal. Here, we present CASTELO, a combined machine learning-molecular dynamics (ML-MD) approach to design novel antigens of increased MHC binding affinity for a Type 1 diabetes (T1D)-implicated system. We build upon a small molecule lead optimization algorithm by training a convolutional variational autoencoder (CVAE) on MD trajectories of 48 different systems across 4 antigens and 4 HLA serotypes. We develop several new machine learning metrics including a structure-based anchor residue classification model as well as cluster comparison scores. ML-MD predictions agree well with experimental binding results and free energy perturbation-predicted binding affinities. Moreover, ML-MD metrics are independent of traditional MD stability metrics such as contact area and RMSF, which do not reflect binding affinity data. Our work supports the role of structure-based deep learning techniques in antigen specific immunotherapy design.
One key task in virtual screening is to accurately predict the binding affinity ($triangle$$G$) of protein-ligand complexes. Recently, deep learning (DL) has significantly increased the predicting accuracy of scoring functions due to the extraordinar
Idiosyncratic adverse drug reactions are unpredictable, dose independent and potentially life threatening; this makes them a major factor contributing to the cost and uncertainty of drug development. Clinical data suggest that many such reactions inv
Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift towards answering the q
Summary: In anticipation of the individualized proteomics era and the need to integrate knowledge from disease studies, we have augmented our peptide identification software RAId DbS to take into account annotated single amino acid polymorphisms, pos
Accumulated clinical studies show that microbes living in humans interact closely with human hosts, and get involved in modulating drug efficacy and drug toxicity. Microbes have become novel targets for the development of antibacterial agents. Theref