ترغب بنشر مسار تعليمي؟ اضغط هنا

Strongly anisotropic antiferromagnetic coupling in EuFe2As2 revealed by stress detwinning

82   0   0.0 ( 0 )
 نشر من قبل Joshua J Sanchez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Of all parent compounds of iron-based high-temperature superconductors, EuFe2As2 exhibits by far the largest magnetostructural coupling due to the sizable biquadratic interaction between Eu and Fe moments. While the coupling between Eu antiferromagnetic order and Fe structural/antiferromagnetic domains enables rapid field detwinning, this prevents simple magnetometry measurements from extracting the critical fields of the Eu metamagnetic transition. Here we measure these critical fields by combining x-ray magnetic circular dichroism spectroscopy with in-situ tunable uniaxial stress and applied magnetic field. The combination of two tuning knobs allows us to separate the stress-detwinning of structural domains from the field-induced reorientation of Eu moments. Intriguingly, we find a spin-flip transition which can only result from a strongly anisotropic interaction between Eu planes. We argue that this anisotropic exchange is a consequence of the strong anisotropy in the magnetically ordered Fe layer, which presents a new form of higher-order coupling between Eu and Fe magnetism.



قيم البحث

اقرأ أيضاً

In the nematic state of iron-based superconductors, twin formation often obscures the intrinsic, anisotropic, in-plane physical properties.Relatively high in-plane external magnetic fields $H_{rm ext}$ greater than the typical lab-scale magnetic fiel ds 10--15 T are usually required to completely detwin a sample. However, recently a very small in-plane $H_{rm ext} sim$ 0.1 T was found to be sufficient for detwinning the nematic domains in EuFe$_2$As$_2$. To explain this behavior, a microscopic theory based on biquadratic magnetic interactions between the Eu and Fe spins has been proposed. Here, using $^{153}$Eu nuclear magnetic resonance (NMR) measurements below the Eu$^{2+}$ ordering temperature, we show experimental evidence of the detwinning under small in-plane $H_{rm ext}$. Our NMR study also reveals the evolution of the angles between the Eu and Fe spins during the detwinning process, which provides the first experimental evidence for the existence of biquadratic coupling in the system.
Employing the momentum-sensitivity of time- and angle-resolved photoemission spectroscopy we demonstrate the analysis of ultrafast single- and many-particle dynamics in antiferromagnetic EuFe2As2. Their separation is based on a temperature-dependent difference of photo-excited hole and electron relaxation times probing the single particle band and the spin density wave gap, respectively. Reformation of the magnetic order occurs at 800 fs, which is four times slower compared to electron-phonon equilibration due to a smaller spin-dependent relaxation phase space.
254 - Y. Xiao , Y. Su , W. Schmidt 2010
We have studied a EuFe2As2 single crystal by neutron diffraction under magnetic fields up to 3.5 T and temperatures down to 2 K. A field induced spin reorientation is observed in the presence of a magnetic field along both the a and c axes, respectiv ely. Above critical field, the ground state antiferromagnetic configuration of Eu$^{2+}$ moments transforms into a ferromagnetic structure with moments along the applied field direction. The magnetic phase diagram for Eu magnetic sublattice in EuFe2As2 is presented. A considerable strain ($sim$0.9%) is induced by the magnetic field, caused by the realignment of the twinning structure. Furthermore, the realignment of the twinning structure is found to be reversible with the rebound of magnetic field, which suggested the existence of magnetic shape-memory effect. The Eu moment ordering exhibits close relationship with the twinning structure. We argue that the Zeeman energy in combined with magnetic anisotropy energy is responsible for the observed spin-lattice coupling.
255 - Fei Han , Di Wang , Yonggang Wang 2017
We studied the crystal structure and spin state of MnP under high pressure with synchrotron X-ray diffraction and X-ray emission spectroscopy. MnP has an exceedingly strong anisotropy in compressibility, with the primary compressible direction along the b axis of the Pnma structure. X-ray emission spectroscopy reveals a pressure-driven quenching of the spin state in MnP. Firstprinciples calculations suggest that the strongly anisotropic compression behavior significantly enhances the dispersion of the Mn d-orbitals and the splitting of the d orbital levels compared to the hypothetical isotropic compression behavior. Thus, we propose spin quenching results mainly from the significant enhancement of the itinerancy of d electrons and partly from spin rearrangement occurring in the split d-orbital levels near the Fermi level. This explains the fast suppression of magnetic ordering in MnP under high pressure. The spin quenching lags behind the occurrence of superconductivity at ~8 GPa implying that spin fluctuations govern the electron pairing for superconductivity.
Electron-phonon coupling (EPC) is one of the most common and fundamental interactions in solids. It not only dominates many basic dynamic processes like resistivity, thermal conductivity etc, but also provides the pairing glue in conventional superco nductors. But in high-temperature superconductors (HTSC), it is still controversial whether or not EPC is in favor of paring. Despite the controversies, many experiments have provided clear evidence for EPC in HTSC. In this paper, we briefly review EPC in cuprate and iron-based superconducting systems revealed by Raman scattering. We introduce how to extract the coupling information through phonon lineshape. Then we discuss the strength of EPC in different HTSC systems and possible factors affecting the strength. The comparative study between Raman phonon theories and experiments allows us to gain insight into some crucial electronic properties, especially superconductivity. Finally we summarize and compare EPC in the two existing HTSC systems, and discuss what role it may play in HTSC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا