ﻻ يوجد ملخص باللغة العربية
Higher-curvature corrections to the effective gravitational action may leave signatures in the spectrum of primordial tensor perturbations if the inflationary energy scale is sufficiently high. In this paper we further investigate the effects of a coupling of the Inflaton field to higher-curvature tensors in models with a minimal breaking of conformal symmetry. We show that an observable violation of the tensor consistency relation from higher-curvature tensors implies also a relatively large running of the tensor tilt, enhanced even by some order of magnitude with respect to the standard slow roll case. This may leave signatures in the tensor two-point function that we could test to recognize higher-curvature effects, above all if they are translated into a blue tilted spectrum visible by future Gravitational Wave experiments. Exploiting current cosmic microwave background and gravitational wave data we also derive constraints on the inflationary parameters, inferring that large higher-curvature corrections seem to be disfavored.
Inflation is often described through the dynamics of a scalar field, slow-rolling in a suitable potential. Ultimately, this inflaton must be identified as the expectation value of a quantum field, evolving in a quantum effective potential. The shape
If observations confirm BICEP2s claim of a tensor-scalar ratio $rapprox 0.2$ on CMB scales, then the inflationary consistency relation $n_{t}=-r/8$ predicts a small negative value for the tensor spectral index $n_t$. We show that future CMB polarizat
We constrain cosmological models where the primordial perturbations have both an adiabatic and a (possibly correlated) cold dark matter (CDM) or baryon isocurvature component. We use both a phenomenological approach, where the primordial power spectr
In this work, we first discuss the possibility that dark energy models with negative energy density values in the past can alleviate the $H_0$ tension, as well as the discrepancy with the baryon acoustic oscillation (BAO) Lyman-$alpha$ data, both whi
We revisit the background solution for scalar matter coupled higher derivative gravity originally reported in arXiv: 1409.8019[hep-th]. In this letter, we choose a convenient ansatz for metric which determines the first order perturbative corrections to scalar as well as geometry.