ترغب بنشر مسار تعليمي؟ اضغط هنا

Calibration of the instrumental polarization effects of SCExAO-CHARIS spectropolarimetric mode

132   0   0.0 ( 0 )
 نشر من قبل Rob van Holstein
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SCExAO at the Subaru telescope is a visible and near-infrared high-contrast imaging instrument employing extreme adaptive optics and coronagraphy. The instrument feeds the near-infrared light (JHK) to the integral field spectrograph CHARIS. Recently, a Wollaston prism was added to CHARIS optical path, giving CHARIS a spectropolarimetric capability that is unique among high-contrast imaging instruments. We present a detailed Mueller matrix model describing the instrumental polarization effects of the complete optical path, thus the telescope and instrument. The 22 wavelength bins of CHARIS provide a unique opportunity to investigate in detail the wavelength dependence of the instrumental polarization effects. From measurements with the internal light source, we find that the image derotator (K-mirror) produces strong wavelength-dependent crosstalk, in the worst case converting ~95% of the incident linear polarization to circularly polarized light that cannot be measured. Theoretical calculations show that the magnitude of the instrumental polarization of the telescope varies with wavelength between approximately 0.5% and 0.7%, and that its angle is exactly equal to the altitude angle of the telescope. We plan to more accurately determine the instrumental polarization of the telescope with observations of a polarization standard star, and fit more comprehensive physical models to all experimental data. In addition, we plan to integrate the complete Mueller matrix model into the existing CHARIS post-processing pipeline, with the aim to achieve a polarimetric accuracy of <0.1% in the degree of linear polarization. Our calibrations of CHARIS spectropolarimetric mode will enable unique quantitative polarimetric studies of circumstellar disks and planetary and brown dwarf companions.



قيم البحث

اقرأ أيضاً

SCExAO at the Subaru telescope is a visible and near-infrared high-contrast imaging instrument employing extreme adaptive optics and coronagraphy. The instrument feeds the near-infrared light (JHK) to the integral-field spectrograph CHARIS. The spect ropolarimetric capability of CHARIS is enabled by a Wollaston prism and is unique among high-contrast imagers. We present a detailed Mueller matrix model describing the instrumental polarization effects of the complete optical path, thus the telescope and instrument. From measurements with the internal light source, we find that the image derotator (K-mirror) produces strongly wavelength-dependent crosstalk, in the worst case converting ~95% of the incident linear polarization to circularly polarized light that cannot be measured. Observations of an unpolarized star show that the magnitude of the instrumental polarization of the telescope varies with wavelength between 0.5% and 1%, and that its angle is exactly equal to the altitude angle of the telescope. Using physical models of the fold mirror of the telescope, the half-wave plate, and the derotator, we simultaneously fit the instrumental polarization effects in the 22 wavelength bins. Over the full wavelength range, our model currently reaches a total polarimetric accuracy between 0.08% and 0.24% in the degree of linear polarization. We propose additional calibration measurements to improve the polarimetric accuracy to <0.1% and plan to integrate the complete Mueller matrix model into the existing CHARIS post-processing pipeline. Our calibrations of CHARIS spectropolarimetric mode will enable unique quantitative polarimetric studies of circumstellar disks and planetary and brown dwarf companions.
Context. Circumstellar disks and self-luminous giant exoplanets or companion brown dwarfs can be characterized through direct-imaging polarimetry at near-infrared wavelengths. SPHERE/IRDIS at the Very Large Telescope has the capabilities to perform s uch measurements, but uncalibrated instrumental polarization effects limit the attainable polarimetric accuracy. Aims. We aim to characterize and correct the instrumental polarization effects of the complete optical system, i.e. the telescope and SPHERE/IRDIS. Methods. We create a detailed Mueller matrix model in the broadband filters Y-, J-, H- and Ks, and calibrate it using measurements with SPHEREs internal light source and observations of two unpolarized stars. We develop a data-reduction method that uses the model to correct for the instrumental polarization effects, and apply it to observations of the circumstellar disk of T Cha. Results. The instrumental polarization is almost exclusively produced by the telescope and SPHEREs first mirror and varies with telescope altitude angle. The crosstalk primarily originates from the image derotator (K-mirror). At some orientations, the derotator causes severe loss of signal (>90% loss in H- and Ks-band) and strongly offsets the angle of linear polarization. With our correction method we reach in all filters a total polarimetric accuracy of <0.1% in the degree of linear polarization and an accuracy of a few degrees in angle of linear polarization. Conclusions. The correction method enables us to accurately measure the polarized intensity and angle of linear polarization of circumstellar disks, and is a vital tool for detecting unresolved (inner) disks and measuring the polarization of substellar companions. We have incorporated the correction method in a highly-automatic end-to-end data-reduction pipeline called IRDAP which is publicly available at https://irdap.readthedocs.io.
We present the data reduction pipeline for CHARIS, a high-contrast integral-field spectrograph for the Subaru Telescope. The pipeline constructs a ramp from the raw reads using the measured nonlinear pixel response, and reconstructs the data cube usi ng one of three extraction algorithms: aperture photometry, optimal extraction, or $chi^2$ fitting. We measure and apply both a detector flatfield and a lenslet flatfield and reconstruct the wavelength- and position-dependent lenslet point-spread function (PSF) from images taken with a tunable laser. We use these measured PSFs to implement a $chi^2$-based extraction of the data cube, with typical residuals of ~5% due to imperfect models of the undersampled lenslet PSFs. The full two-dimensional residual of the $chi^2$ extraction allows us to model and remove correlated read noise, dramatically improving CHARIS performance. The $chi^2$ extraction produces a data cube that has been deconvolved with the line-spread function, and never performs any interpolations of either the data or the individual lenslet spectra. The extracted data cube also includes uncertainties for each spatial and spectral measurement. CHARIS software is parallelized, written in Python and Cython, and freely available on github with a separate documentation page. Astrometric and spectrophotometric calibrations of the data cubes and PSF subtraction will be treated in a forthcoming paper.
We describe a new high-contrast imaging capability well suited for studying planet-forming disks: near-infrared (NIR) high-contrast spectropolarimetric imaging with the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system coupled with the Cor onagraphic High Angular Resolution Imaging Spectrograph (CHARIS) integral field spectrograph (IFS). The advent of extreme adaptive optics (AO) systems, like SCExAO, has enabled recovery of planet-mass companions at the expected locations of gas-giant formation in young disks alongside disk structures (such as gaps or spirals) that may indicate protoplanet formation. In combination with SCExAO, the CHARIS IFS in polarimetry mode allows characterization of these systems at wavelengths spanning the NIR J, H, and K bands ($1.1-2.4$ $mu m$, $Rsim20$) and at angular separations as small as 0.04. By comparing the resulting images with forward-modeled scattered light or 3D radiative-transfer models, the likely origins of any observed features can be assessed. Utilization of swift optimization algorithms, such as differential evolution (DE), to identify model parameters that best reproduce the observations allows plausible disk geometries to be explored efficiently. The recent addition of CHARISs unique integral field spectropolarimetry mode has further facilitated the study of planet-forming disks -- aiding in the confirmation of candidate protoplanets, the diagnosis of disk structures, and the characterization of dust grain populations. We summarize preliminary results for two young planet-forming disk systems based on observations with the novel integral field spectropolarimetry mode for SCExAO/CHARIS.
We present an analysis of instrument performance using new observations taken with the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) instrument and the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system. In a correlati on analysis of our datasets (which use the broadband mode covering J through K band in a single spectrum), we find that chromaticity in the SCExAO/CHARIS system is generally worse than temporal stability. We also develop a point spread function (PSF) subtraction pipeline optimized for the CHARIS broadband mode, including a forward modelling-based exoplanet algorithmic throughput correction scheme. We then present contrast curves using this newly developed pipeline. An analogous subtraction of the same datasets using only the H band slices yields the same final contrasts as the full JHK sequences; this result is consistent with our chromaticity analysis, illustrating that PSF subtraction using spectral differential imaging (SDI) in this broadband mode is generally not more effective than SDI in the individual J, H, or K bands. In the future, the data processing framework and analysis developed in this paper will be important to consider for additional SCExAO/CHARIS broadband observations and other ExAO instruments which plan to implement a similar integral field spectrograph broadband mode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا