ﻻ يوجد ملخص باللغة العربية
We present a traversable wormhole solution using the traceless $f(R,T)$ theory of gravity. In the $f(R,T)$ gravity, the Ricci scalar $R$ in the Einstein-Hilbert action is replaced by a function of $R$ and trace of the energy momentum tensor $T$. The traceless version of the $f(R,T)$ gravity gives rise to a possible wormhole geometry without need for exotic matter, which violates the principle of causality. Using a physically plausible ansatz for the wormholes shape function, the traceless field equations lead to compliance with the weak energy condition at very well defined intervals of the coupling constant $lambda$ in the $f(R,T)=R+2lambda T$ form. Our solution leads to other well-behaved energy conditions considering some possible values of the parameter $omega$ in the equation of state $p_r=omega rho$, with $p_r$ being the radial pressure and $rho $ the density. The energy conditions are obeyed in the ranges $lambda < -4pi$ and $omega > -1$. Through the calculation of the Volume Integral Quantifier, one sees that this wormholes can be traversable and respect the causality, since the amount of exotic matter in its interior can be arbitrarily small.
Wormholes are a solution for General Relativity field equations which characterize a passage or a tunnel that connects two different regions of space-time and is filled by some sort of exotic matter, that does not satisfy the energy conditions. On th
In this work we propose the modelling of static wormholes within the $f(R,T)$ extended theory of gravity perspective. We present some models of wormholes, which are constructed from different hypothesis for their matter content, i.e., different relat
Traversable wormholes, studied by Morris and Thorne cite{Morris1} in general relativity, are investigated in this research paper in $f(R,T)$ gravity by introducing a new form of non-linear $f(R,T)$ function. By using this novel function, the Einstein
The present paper is aimed at the study of traversable wormholes in $f(R)$ gravity with a viable $f(R)$ function defined as $f(R)=R-mu R_cBig(frac{R}{R_c}Big)^p$, where $R$ is scalar curvature, $mu$, $R_c$ and $p$ are constants with $mu, R_c>0$ and $
In this paper, we employ mimetic $f(R,T)$ gravity coupled with Lagrange multiplier and mimetic potential to yield viable inflationary cosmological solutions consistent with latest Planck and BICEP2/Keck Array data. We present here three viable inflat