ﻻ يوجد ملخص باللغة العربية
It is well known that several viruses, as well as SARS-CoV-2, can be transmitted through airborne diffusion of saliva micro-droplets. For this reason many reserach groups have been devoted their efforts in order to gain new insight into the transport of fluids and particles originted from human respiratory tracts. This paper aims to provide a contribution to the numerical modelling of bio-aerosols. In particular, the well-known problem around the safety distance to be held for avoiding virus transmission in the absence of external wind is further investigated. Thus, new indexes capable of evaluating the contamination risk are introduced and the possibility to inactivate virus particles by means of an external UV-C radiation source is studied. For this purpose, a new model which takes into account biological inactivation deriving from UV-C exposure in a Eulerian-Lagrangian framework is presented.
There is increasing evidence that infection with SARS-CoV-2 can cause a spectrum of neurological symptoms. In this paper, we develop a theoretical concept underlying such neurological COVID-19 consequences by employing a non-equilibrium thermodynamic
Viral transmission pathways have profound implications for public safety; it is thus imperative to establish a complete understanding of viable infectious avenues. Mounting evidence suggests SARS-CoV-2 can be transmitted via the air; however, this ha
SARS-CoV-2 causing COVID-19 disease has moved rapidly around the globe, infecting millions and killing hundreds of thousands. The basic reproduction number, which has been widely used and misused to characterize the transmissibility of the virus, hid
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global medical systems and economies, and rules our daily living life. Controlling the outbreak of SARS-CoV-2 has become one of the most important and urgent s
Accurately estimating the effectiveness of stay-at-home orders (SHOs) on reducing social contact and disease spread is crucial for mitigating pandemics. Leveraging individual-level location data for 10 million smartphones, we observe that by April 30