ترغب بنشر مسار تعليمي؟ اضغط هنا

Eulerian-Lagrangian modelling of bio-aerosols irradiated by UV-C light in relation to SARS-CoV-2 transmission

100   0   0.0 ( 0 )
 نشر من قبل Valerio D'Alessandro
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well known that several viruses, as well as SARS-CoV-2, can be transmitted through airborne diffusion of saliva micro-droplets. For this reason many reserach groups have been devoted their efforts in order to gain new insight into the transport of fluids and particles originted from human respiratory tracts. This paper aims to provide a contribution to the numerical modelling of bio-aerosols. In particular, the well-known problem around the safety distance to be held for avoiding virus transmission in the absence of external wind is further investigated. Thus, new indexes capable of evaluating the contamination risk are introduced and the possibility to inactivate virus particles by means of an external UV-C radiation source is studied. For this purpose, a new model which takes into account biological inactivation deriving from UV-C exposure in a Eulerian-Lagrangian framework is presented.



قيم البحث

اقرأ أيضاً

There is increasing evidence that infection with SARS-CoV-2 can cause a spectrum of neurological symptoms. In this paper, we develop a theoretical concept underlying such neurological COVID-19 consequences by employing a non-equilibrium thermodynamic approach that allows linking the neuronal electric potential with a virus-induced pH variation. Our theoretical findings support further experimental work on therapeutically correcting electrolyte imbalances, such as Na$^+$ and K$^+$, to attenuate the neurological effects of SARS-CoV-2.
Viral transmission pathways have profound implications for public safety; it is thus imperative to establish a complete understanding of viable infectious avenues. Mounting evidence suggests SARS-CoV-2 can be transmitted via the air; however, this ha s not yet been demonstrated. Here we quantitatively analyze virion accumulation by accounting for aerosolized virion emission and destabilization. Reported superspreading events analyzed within this framework point towards aerosol mediated transmission of SARS-CoV-2. Virion exposure calculated for these events is found to trace out a single value, suggesting a universal minimum infective dose (MID) via aerosol that is comparable to the MIDs measured for other respiratory viruses; thus, the consistent infectious exposure levels and their commensurability to known aerosol-MIDs establishes the plausibility of aerosol transmission of SARS-CoV-2. Using filtration at a rate exceeding the destabilization rate of aerosolized SARS-CoV-2 can reduce exposure below this infective dose.
SARS-CoV-2 causing COVID-19 disease has moved rapidly around the globe, infecting millions and killing hundreds of thousands. The basic reproduction number, which has been widely used and misused to characterize the transmissibility of the virus, hid es the fact that transmission is stochastic, is dominated by a small number of individuals, and is driven by super-spreading events (SSEs). The distinct transmission features, such as high stochasticity under low prevalence, and the central role played by SSEs on transmission dynamics, should not be overlooked. Many explosive SSEs have occurred in indoor settings stoking the pandemic and shaping its spread, such as long-term care facilities, prisons, meat-packing plants, fish factories, cruise ships, family gatherings, parties and night clubs. These SSEs demonstrate the urgent need to understand routes of transmission, while posing an opportunity that outbreak can be effectively contained with targeted interventions to eliminate SSEs. Here, we describe the potential types of SSEs, how they influence transmission, and give recommendations for control of SARS-CoV-2.
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global medical systems and economies, and rules our daily living life. Controlling the outbreak of SARS-CoV-2 has become one of the most important and urgent s trategies throughout the whole world. As of October, 2020, there have not yet been any medicines or therapies to be effective against SARS-CoV-2. Thus, rapid and sensitive diagnostics is the most important measures to control the outbreak of SARS-CoV-2. Homogeneous biosensing based on magnetic nanoparticles (MNPs) is one of the most promising approaches for rapid and highly sensitive detection of biomolecules. This paper proposes an approach for rapid and sensitive detection of SARS-CoV-2 with functionalized MNPs via the measurement of their magnetic response in an ac magnetic field. Experimental results demonstrate that the proposed approach allows the rapid detection of mimic SARS-CoV-2 with a limit of detection of 0.084 nM (5.9 fmole). The proposed approach has great potential for designing a low-cost and point-of-care device for rapid and sensitive diagnostics of SARS-CoV-2.
Accurately estimating the effectiveness of stay-at-home orders (SHOs) on reducing social contact and disease spread is crucial for mitigating pandemics. Leveraging individual-level location data for 10 million smartphones, we observe that by April 30 th---when nine in ten Americans were under a SHO---daily movement had fallen 70% from pre-COVID levels. One-quarter of this decline is causally attributable to SHOs, with wide demographic differences in compliance, most notably by political affiliation. Likely Trump voters reduce movement by 9% following a local SHO, compared to a 21% reduction among their Clinton-voting neighbors, who face similar exposure risks and identical government orders. Linking social distancing behavior with an epidemic model, we estimate that reductions in movement have causally reduced SARS-CoV-2 transmission rates by 49%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا