ﻻ يوجد ملخص باللغة العربية
We consider the problem of dividing limited resources between a set of agents arriving sequentially with unknown (stochastic) utilities. Our goal is to find a fair allocation - one that is simultaneously Pareto-efficient and envy-free. When all utilities are known upfront, the above desiderata are simultaneously achievable (and efficiently computable) for a large class of utility functions. In a sequential setting, however, no policy can guarantee these desiderata simultaneously for all possible utility realizations. A natural online fair allocation objective is to minimize the deviation of each agents final allocation from their fair allocation in hindsight. This translates into simultaneous guarantees for both Pareto-efficiency and envy-freeness. However, the resulting dynamic program has state-space which is exponential in the number of agents. We propose a simple policy, HopeOnline, that instead aims to `match the ex-post fair allocation vector using the current available resources and `predicted histogram of future utilities. We demonstrate the effectiveness of our policy compared to other heurstics on a dataset inspired by mobile food-bank allocations.
We consider the problem of dividing limited resources to individuals arriving over $T$ rounds. Each round has a random number of individuals arrive, and individuals can be characterized by their type (i.e. preferences over the different resources). A
We consider the problem of fairly allocating indivisible public goods. We model the public goods as elements with feasibility constraints on what subsets of elements can be chosen, and assume that agents have additive utilities across elements. Our m
We consider a fairness problem in resource allocation where multiple groups demand resources from a common source with the total fixed amount. The general model was introduced by Elzayn et al. [FAT*19]. We follow Donahue and Kleinberg [FAT*20] who co
Healthcare programs such as Medicaid provide crucial services to vulnerable populations, but due to limited resources, many of the individuals who need these services the most languish on waiting lists. Survival models, e.g. the Cox proportional haza
We consider the problem of fairly allocating indivisible goods, among agents, under cardinality constraints and additive valuations. In this setting, we are given a partition of the entire set of goods---i.e., the goods are categorized---and a limit