ترغب بنشر مسار تعليمي؟ اضغط هنا

ProtoPShare: Prototype Sharing for Interpretable Image Classification and Similarity Discovery

130   0   0.0 ( 0 )
 نشر من قبل Dawid Rymarczyk
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we introduce ProtoPShare, a self-explained method that incorporates the paradigm of prototypical parts to explain its predictions. The main novelty of the ProtoPShare is its ability to efficiently share prototypical parts between the classes thanks to our data-dependent merge-pruning. Moreover, the prototypes are more consistent and the model is more robust to image perturbations than the state of the art method ProtoPNet. We verify our findings on two datasets, the CUB-200-2011 and the Stanford Cars.



قيم البحث

اقرأ أيضاً

113 - Zhiyu Xue , Lixin Duan , Wen Li 2020
While deep learning has been successfully applied to many real-world computer vision tasks, training robust classifiers usually requires a large amount of well-labeled data. However, the annotation is often expensive and time-consuming. Few-shot imag e classification has thus been proposed to effectively use only a limited number of labeled examples to train models for new classes. Recent works based on transferable metric learning methods have achieved promising classification performance through learning the similarity between the features of samples from the query and support sets. However, rare of them explicitly considers the model interpretability, which can actually be revealed during the training phase. For that, in this work, we propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works as in a neural network as well as to find out specific regions that are related to each other in images coming from the query and support sets. Moreover, we also present a visualization strategy named Region Activation Mapping (RAM) to intuitively explain what our method has learned by visualizing intermediate variables in our network. We also present a new way to generalize the interpretability from the level of tasks to categories, which can also be viewed as a method to find the prototypical parts for supporting the final decision of our RCN. Extensive experiments on four benchmark datasets clearly show the effectiveness of our method over existing baselines.
We propose to apply a 2D CNN architecture to 3D MRI image Alzheimers disease classification. Training a 3D convolutional neural network (CNN) is time-consuming and computationally expensive. We make use of approximate rank pooling to transform the 3D MRI image volume into a 2D image to use as input to a 2D CNN. We show our proposed CNN model achieves $9.5%$ better Alzheimers disease classification accuracy than the baseline 3D models. We also show that our method allows for efficient training, requiring only 20% of the training time compared to 3D CNN models. The code is available online: https://github.com/UkyVision/alzheimer-project.
Recent advances in self-attention and pure multi-layer perceptrons (MLP) models for vision have shown great potential in achieving promising performance with fewer inductive biases. These models are generally based on learning interaction among spati al locations from raw data. The complexity of self-attention and MLP grows quadratically as the image size increases, which makes these models hard to scale up when high-resolution features are required. In this paper, we present the Global Filter Network (GFNet), a conceptually simple yet computationally efficient architecture, that learns long-term spatial dependencies in the frequency domain with log-linear complexity. Our architecture replaces the self-attention layer in vision transformers with three key operations: a 2D discrete Fourier transform, an element-wise multiplication between frequency-domain features and learnable global filters, and a 2D inverse Fourier transform. We exhibit favorable accuracy/complexity trade-offs of our models on both ImageNet and downstream tasks. Our results demonstrate that GFNet can be a very competitive alternative to transformer-style models and CNNs in efficiency, generalization ability and robustness. Code is available at https://github.com/raoyongming/GFNet
We present Gradient Activation Maps (GAM) - a machinery for explaining predictions made by visual similarity and classification models. By gleaning localized gradient and activation information from multiple network layers, GAM offers improved visual explanations, when compared to existing alternatives. The algorithmic advantages of GAM are explained in detail, and validated empirically, where it is shown that GAM outperforms its alternatives across various tasks and datasets.
Transferability estimation is an essential problem in transfer learning to predict how good the performance is when transferring a source model (or source task) to a target task. Recent analytical transferability metrics have been widely used for sou rce model selection and multi-task learning. A major challenge is how to make transfereability estimation robust under the cross-domain cross-task settings. The recently proposed OTCE score solves this problem by considering both domain and task differences, with the help of transfer experiences on auxiliary tasks, which causes an efficiency overhead. In this work, we propose a practical transferability metric called JC-NCE score that dramatically improves the robustness of the task difference estimation in OTCE, thus removing the need for auxiliary tasks. Specifically, we build the joint correspondences between source and target data via solving an optimal transport problem with a ground cost considering both the sample distance and label distance, and then compute the transferability score as the negative conditional entropy of the matched labels. Extensive validations under the intra-dataset and inter-dataset transfer settings demonstrate that our JC-NCE score outperforms the auxiliary-task free version of OTCE for 7% and 12%, respectively, and is also more robust than other existing transferability metrics on average.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا