ترغب بنشر مسار تعليمي؟ اضغط هنا

Model Predictive Control with and without Terminal Weight: Stability and Algorithms

188   0   0.0 ( 0 )
 نشر من قبل Wen-Hua Chen Prof
 تاريخ النشر 2020
والبحث باللغة English
 تأليف Wen-Hua Chen




اسأل ChatGPT حول البحث

This paper presents stability analysis tools for model predictive control (MPC) with and without terminal weight. Stability analysis of MPC with a limited horizon but without terminal weight is a long-standing open problem. By using a modified value function as an Lyapunov function candidate and the principle of optimality, this paper establishes stability conditions for this type of widely spread MPC algorithms. A new stability guaranteed MPC algorithm without terminal weight (MPCS) is presented. With the help of designing a new sublevel set defined by the value function of one-step ahead stage cost, conditions for checking its recursive feasibility and stability of the proposed MPC algorithm are presented. The new stability condition and the derived MPCS overcome the difficulties arising in the existing terminal weight based MPC framework, including the need of searching a suitable terminal weight and possible poor performance caused by an inappropriate terminal weight. This work is further extended to MPC with a terminal weight for the completeness. Numerical examples are presented to demonstrate the effectiveness of the proposed tool, whereas the existing stability analysis tools are either not applicable or lead to quite conservative results. It shows that the proposed tools offer a number of mechanisms to achieve stability: adjusting state and/or control weights, extending the length of horizon, and adding a simple extra constraint on the first or second state in the optimisation.



قيم البحث

اقرأ أيضاً

This paper proposes an off-line algorithm, called Recurrent Model Predictive Control (RMPC), to solve general nonlinear finite-horizon optimal control problems. Unlike traditional Model Predictive Control (MPC) algorithms, it can make full use of the current computing resources and adaptively select the longest model prediction horizon. Our algorithm employs a recurrent function to approximate the optimal policy, which maps the system states and reference values directly to the control inputs. The number of prediction steps is equal to the number of recurrent cycles of the learned policy function. With an arbitrary initial policy function, the proposed RMPC algorithm can converge to the optimal policy by directly minimizing the designed loss function. We further prove the convergence and optimality of the RMPC algorithm thorough Bellman optimality principle, and demonstrate its generality and efficiency using two numerical examples.
This paper proposes an off-line algorithm, called Recurrent Model Predictive Control (RMPC), to solve general nonlinear finite-horizon optimal control problems. Unlike traditional Model Predictive Control (MPC) algorithms, it can make full use of the current computing resources and adaptively select the longest model prediction horizon. Our algorithm employs a recurrent function to approximate the optimal policy, which maps the system states and reference values directly to the control inputs. The number of prediction steps is equal to the number of recurrent cycles of the learned policy function. With an arbitrary initial policy function, the proposed RMPC algorithm can converge to the optimal policy by directly minimizing the designed loss function. We further prove the convergence and optimality of the RMPC algorithm thorough Bellman optimality principle, and demonstrate its generality and efficiency using two numerical examples.
115 - Ugo Rosolia , Aaron D. Ames 2020
In this paper we present a multi-rate control architecture for safety critical systems. We consider a high level planner and a low level controller which operate at different frequencies. This multi-rate behavior is described by a piecewise nonlinear model which evolves on a continuous and a discrete level. First, we present sufficient conditions which guarantee recursive constraint satisfaction for the closed-loop system. Afterwards, we propose a control design methodology which leverages Control Barrier Functions (CBFs) for low level control and Model Predictive Control (MPC) policies for high level planning. The control barrier function is designed using the full nonlinear dynamical model and the MPC is based on a simplified planning model. When the nonlinear system is control affine and the high level planning model is linear, the control actions are computed by solving convex optimization problems at each level of the hierarchy. Finally, we show the effectiveness of the proposed strategy on a simulation example, where the low level control action is updated at a higher frequency than the high level command.
134 - Wei-Han Chen , Fengqi You 2019
Appropriate greenhouse temperature should be maintained to ensure crop production while minimizing energy consumption. Even though weather forecasts could provide a certain amount of information to improve control performance, it is not perfect and f orecast error may cause the temperature to deviate from the acceptable range. To inherent uncertainty in weather that affects control accuracy, this paper develops a data-driven robust model predictive control (MPC) approach for greenhouse temperature control. The dynamic model is obtained from thermal resistance-capacitance modeling derived by the Building Resistance-Capacitance Modeling (BRCM) toolbox. Uncertainty sets of ambient temperature and solar radiation are captured by support vector clustering technique, and they are further tuned for better quality by training-calibration procedure. A case study that implements the carefully chosen uncertainty sets on robust model predictive control shows that the data-driven robust MPC has better control performance compared to rule-based control, certainty equivalent MPC, and robust MPC.
We propose Kernel Predictive Control (KPC), a learning-based predictive control strategy that enjoys deterministic guarantees of safety. Noise-corrupted samples of the unknown system dynamics are used to learn several models through the formalism of non-parametric kernel regression. By treating each prediction step individually, we dispense with the need of propagating sets through highly non-linear maps, a procedure that often involves multiple conservative approximation steps. Finite-sample error bounds are then used to enforce state-feasibility by employing an efficient robust formulation. We then present a relaxation strategy that exploits on-line data to weaken the optimization problem constraints while preserving safety. Two numerical examples are provided to illustrate the applicability of the proposed control method.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا