ﻻ يوجد ملخص باللغة العربية
This paper presents stability analysis tools for model predictive control (MPC) with and without terminal weight. Stability analysis of MPC with a limited horizon but without terminal weight is a long-standing open problem. By using a modified value function as an Lyapunov function candidate and the principle of optimality, this paper establishes stability conditions for this type of widely spread MPC algorithms. A new stability guaranteed MPC algorithm without terminal weight (MPCS) is presented. With the help of designing a new sublevel set defined by the value function of one-step ahead stage cost, conditions for checking its recursive feasibility and stability of the proposed MPC algorithm are presented. The new stability condition and the derived MPCS overcome the difficulties arising in the existing terminal weight based MPC framework, including the need of searching a suitable terminal weight and possible poor performance caused by an inappropriate terminal weight. This work is further extended to MPC with a terminal weight for the completeness. Numerical examples are presented to demonstrate the effectiveness of the proposed tool, whereas the existing stability analysis tools are either not applicable or lead to quite conservative results. It shows that the proposed tools offer a number of mechanisms to achieve stability: adjusting state and/or control weights, extending the length of horizon, and adding a simple extra constraint on the first or second state in the optimisation.
This paper proposes an off-line algorithm, called Recurrent Model Predictive Control (RMPC), to solve general nonlinear finite-horizon optimal control problems. Unlike traditional Model Predictive Control (MPC) algorithms, it can make full use of the
This paper proposes an off-line algorithm, called Recurrent Model Predictive Control (RMPC), to solve general nonlinear finite-horizon optimal control problems. Unlike traditional Model Predictive Control (MPC) algorithms, it can make full use of the
In this paper we present a multi-rate control architecture for safety critical systems. We consider a high level planner and a low level controller which operate at different frequencies. This multi-rate behavior is described by a piecewise nonlinear
Appropriate greenhouse temperature should be maintained to ensure crop production while minimizing energy consumption. Even though weather forecasts could provide a certain amount of information to improve control performance, it is not perfect and f
We propose Kernel Predictive Control (KPC), a learning-based predictive control strategy that enjoys deterministic guarantees of safety. Noise-corrupted samples of the unknown system dynamics are used to learn several models through the formalism of