ﻻ يوجد ملخص باللغة العربية
We present algorithms (a) for nested neural likelihood-to-evidence ratio estimation, and (b) for simulation reuse via an inhomogeneous Poisson point process cache of parameters and corresponding simulations. Together, these algorithms enable automatic and extremely simulator efficient estimation of marginal and joint posteriors. The algorithms are applicable to a wide range of physics and astronomy problems and typically offer an order of magnitude better simulator efficiency than traditional likelihood-based sampling methods. Our approach is an example of likelihood-free inference, thus it is also applicable to simulators which do not offer a tractable likelihood function. Simulator runs are never rejected and can be automatically reused in future analysis. As functional prototype implementation we provide the open-source software package swyft.
Fast and automated inference of binary-lens, single-source (2L1S) microlensing events with sampling-based Bayesian algorithms (e.g., Markov Chain Monte Carlo; MCMC) is challenged on two fronts: high computational cost of likelihood evaluations with m
Parametric stochastic simulators are ubiquitous in science, often featuring high-dimensional input parameters and/or an intractable likelihood. Performing Bayesian parameter inference in this context can be challenging. We present a neural simulator-
We introduce a new Markov-Chain Monte Carlo (MCMC) approach designed for efficient sampling of highly correlated and multimodal posteriors. Parallel tempering, though effective, is a costly technique for sampling such posteriors. Our approach minimiz
The Hubble constant value is currently known to 10% accuracy unless assumptions are made for the cosmology (Sandage et al. 2006). Gravitational lens systems provide another probe of the Hubble constant using time delay measurements. However, current
EMMA is a cosmological simulation code aimed at investigating the reionization epoch. It handles simultaneously collisionless and gas dynamics, as well as radiative transfer physics using a moment-based description with the M1 approximation. Field qu