ﻻ يوجد ملخص باللغة العربية
This chapter appears in Fractional Quantum Hall Effects: New Development, edited by B. I. Halperin and J. K. Jain (World Scientific, 2020). The chapter begins with a primer on composite fermions, and then reviews three directions that have recently been pursued. It reports on theoretical calculations making detailed quantitative predictions for two sets of phenomena, namely spin polarization transitions and the phase diagram of the crystal. This is followed by the Kohn-Sham density functional theory of the fractional quantum Hall effect. The chapter concludes with recent applications of the parton theory of the fractional quantum Hall effect to certain delicate states.
Hall viscosity, also known as the Lorentz shear modulus, has been proposed as a topological property of a quantum Hall fluid. Using a recent formulation of the composite fermion theory on the torus, we evaluate the Hall viscosities for a large number
The fractional quantum Hall (FQH) effect was discovered in two-dimensional electron systems subject to a large perpendicular magnetic field nearly four decades ago. It helped launch the field of topological phases, and in addition, because of the que
In 1929 Felix Bloch suggested that the paramagnetic Fermi sea of electrons should make a spontaneous transition to a fully-magnetized state at very low densities, because the exchange energy gained by aligning the spins exceeds the enhancement in the
We propose a (4+1) dimensional Chern-Simons field theoretical description of the fractional quantum Hall effect. It suggests that composite fermions reside on a momentum manifold with a nonzero Chern number. Based on derivations from microscopic wave
Two-dimensional interacting electrons exposed to strong perpendicular magnetic fields generate emergent, exotic quasiparticles phenomenologically distinct from electrons. Specifically, electrons bind with an even number of flux quanta, and transform