ﻻ يوجد ملخص باللغة العربية
Under the right conditions, the streaming instability between imperfectly coupled dust and gas is a powerful mechanism for planetesimal formation as it can concentrate dust grains to the point of gravitational collapse. In its simplest form, the streaming instability can be captured by analyzing the linear stability of unstratified disk models, which represent the midplane of protoplanetary disks. We extend such studies by carrying out vertically-global linear stability analyses of dust layers in protoplanetary disks. We find the dominant form of instability in stratified dust layers is one driven by the vertical gradient in the rotation velocity of the dust-gas mixture, but also requires partial dust-gas coupling. These vertically-shearing streaming instabilities grow on orbital timescales and occur on radial length scales $sim10^{-3}H_mathrm{g}$, where $H_mathrm{g}$ is the local pressure scale height. The classic streaming instability, associated with the relative radial drift between dust and gas, occur on radial length scales $sim10^{-2}H_mathrm{g}$, but have much smaller growth rates than vertically-shearing streaming instabilities. Including gas viscosity is strongly stabilizing and leads to vertically-elongated disturbances. We briefly discuss the potential effects of vertically-shearing streaming instabilities on planetesimal formation.
We use the Fokker-Planck equation and model the dispersive dynamics of solid particles in annular protoplanetary disks whose gas component is more massive than the particle phase. We model particle--gas interactions as hard sphere collisions, determi
Large scale vortices could play a key role in the evolution of protoplanetary disks, particularly in the dead-zone where no turbulence associated with magnetic field is expected. Their possible formation by the subcritical baroclinic instability is a
The streaming instability is a popular candidate for planetesimal formation by concentrating dust particles to trigger gravitational collapse. However, its robustness against physical conditions expected in protoplanetary disks is unclear. In particu
In the recent years, sub/mm observations of protoplanetary disks have discovered an incredible diversity of substructures in the dust emission. An important result was the finding that dust grains of mm size are embedded in very thin dusty disks. Thi
The streaming instability is a leading candidate mechanism to explain the formation of planetesimals. Yet, the role of this instability in the driving of turbulence in protoplanetary disks, given its fundamental nature as a linear hydrodynamical inst